Fr. 207.00

Analysis of Failure in Fiber Polymer Laminates - The Theory of Alfred Puck

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

Fiber Reinforced Plastics (FRP) are widely used for the design of load-bearing structures. Life time prediction based on failure analysis is therefore essential for many applications in Aeronautics, Automotive and Civil Engineering. Analysis of Failure in Fiber Polymer Laminates presents Alfred Puck´s failure model, which, among several other theories, predicts fracture limits best and describes the failure phenomena in FRP most realistically - as confirmed within the "World-wide Failure Exercise". Using Puck´s model the composite engineer can follow the gradual failure process in a laminate and deduce from the results of the analysis how to improve the laminate design. This capability distinguishes the model from other phenomenological and global models. It thus reduces the number of required component tests and iteration loops in the design process and paves the way to sorely needed software for crash-simulation of FRP-structures.

List of contents

Failure of laminates.- Stress and strength analysis: Basics and definitions.- Puck's action plane fracture criteria.- Analysis of the gradual failure process.- Experimental work.- Implementation in software.- Application of Puck's work in industrial practice.- Concluding remarks.

Summary

Fiber Reinforced Plastics (FRP) are widely used for the design of load-bearing structures. Life time prediction based on failure analysis is therefore essential for many applications in Aeronautics, Automotive and Civil Engineering. Analysis of Failure in Fiber Polymer Laminates presents Alfred Puck´s failure model, which, among several other theories, predicts fracture limits best and describes the failure phenomena in FRP most realistically – as confirmed within the “World-wide Failure Exercise”. Using Puck´s model the composite engineer can follow the gradual failure process in a laminate and deduce from the results of the analysis how to improve the laminate design. This capability distinguishes the model from other phenomenological and global models. It thus reduces the number of required component tests and iteration loops in the design process and paves the way to sorely needed software for crash-simulation of FRP-structures.

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.