Fr. 70.00

Field Free Line Magnetic Particle Imaging

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

Marlitt Erbe provides a detailed introduction into the young research field of Magnetic Particle Imaging (MPI) and field free line (FFL) imaging in particular. She derives a mathematical description of magnetic field generation for FFL imaging in MPI. To substantiate the simulation studies on magnetic FFL generation with a proof-of-concept, the author introduces the FFL field demonstrator, which provides the world's first experimentally generated rotated and translated magnetic FFL field complying with the requirements for FFL reconstruction. Furthermore, she proposes a scanner design of considerably enhanced magnetic field quality and efficiency. The author discusses the influence of magnetic field quality optimization on the image quality achieved using efficient Radon-based reconstruction methods, which arise for a line detection scheme and based on this optimized design, presents a dynamic FFL scanner assembly.

List of contents

Introduction of a Field Free Line for Magnetic Particle Imaging.- Magnetic Field Free Line Generation.- A Field Free Line Field Demonstrator.- Scanner Efficiency and Magnetic Field Quality Analysis.- Efficient Reconstruction Algorithms.- A Dynamic Field Free Line Imaging Device.

About the author

Marlitt Erbe earned her doctoral degree at the Institute of Medical Engineering, University of Lübeck, under the supervision of Prof. Thorsten M. Buzug.

Summary

Marlitt Erbe provides a detailed introduction into the young research field of Magnetic Particle Imaging (MPI) and field free line (FFL) imaging in particular. She derives a mathematical description of magnetic field generation for FFL imaging in MPI. To substantiate the simulation studies on magnetic FFL generation with a proof-of-concept, the author introduces the FFL field demonstrator, which provides the world’s first experimentally generated rotated and translated magnetic FFL field complying with the requirements for FFL reconstruction. Furthermore, she proposes a scanner design of considerably enhanced magnetic field quality and efficiency. The author discusses the influence of magnetic field quality optimization on the image quality achieved using efficient Radon-based reconstruction methods, which arise for a line detection scheme and based on this optimized design, presents a dynamic FFL scanner assembly.

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.