Sold out

Cardinal Invariants on Boolean Algebras

English · Hardback

Description

Read more

This book is concerned with cardinal number valued functions defined for any Boolean algebra. Examples of such functions are independence, which assigns to each Boolean algebra the supremum of the cardinalities of its free subalgebras, and cellularity, which gives the supremum of cardinalities of sets of pairwise disjoint elements.
The questions considered are the behaviour of these functions under algebraic operations such as products, free products, ultraproducts, and their relationship to one another. Assuming familiarity with only the basics of Boolean algebras and set theory, the book reviews current knowledge about these functions, giving complete proofs for most facts. A special feature of the book is the attention given to open problems, of which 97 are formulated.
Diagrams at the end of the book summarize the relationships between the functions for many important classes of Boolean algebras, including tree algebra and superatomic algebras.

Product details

Authors James D. Monk
Publisher Springer Basel
 
Languages English
Product format Hardback
Released 01.01.1996
 
EAN 9783764354022
ISBN 978-3-7643-5402-2
No. of pages 298
Weight 664 g
Series Progress in Mathematics
Subject Natural sciences, medicine, IT, technology > Mathematics > General, dictionaries

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.