Fr. 174.00

Introduction to Computational Stochastic PDEs

English · Paperback / Softback

Shipping usually within 2 to 3 weeks (title will be printed to order)

Description

Read more

"This book gives a comprehensive introduction to numerical methods and analysis of stochastic processes, random fields and stochastic differential equations, and offers graduate students and researchers powerful tools for understanding uncertainty quantification for risk analysis. Coverage includes traditional stochastic ODEs with white noise forcing, strong and weak approximation, and the multi-level Monte Carlo method. Later chapters apply the theory of random fields to the numerical solution of elliptic PDEs with correlated random data, discuss the Monte Carlo method, and introduce stochastic Galerkin finite-element methods. Finally, stochastic parabolic PDEs are developed. Assuming little previous exposure to probability and statistics, theory is developed in tandem with state-of the art computational methods through worked examples, exercises, theorems and proofs. The set of MATLAB codes included (and downloadable) allows readers to perform computations themselves and solve the test problems discussed. Practical examples are drawn from finance, mathematical biology, neuroscience, fluid flow modeling and materials science"--

List of contents










Part I. Deterministic Differential Equations: 1. Linear analysis; 2. Galerkin approximation and finite elements; 3. Time-dependent differential equations; Part II. Stochastic Processes and Random Fields: 4. Probability theory; 5. Stochastic processes; 6. Stationary Gaussian processes; 7. Random fields; Part III. Stochastic Differential Equations: 8. Stochastic ordinary differential equations (SODEs); 9. Elliptic PDEs with random data; 10. Semilinear stochastic PDEs.

About the author










Gabriel Lord is a Professor in the Maxwell Institute, Department of Mathematics, at Heriot-Watt University, Edinburgh. He has worked on stochastic PDEs and applications for the past ten years. He is the co-editor of Stochastic Methods in Neuroscience with C. Liang, has organised a number of international meetings in the field, and is principal investigator on the porous media processes and mathematics network funded by the Engineering and Physical Sciences Research Council (UK). He is a member of the Society for Industrial and Applied Mathematics, LMS, and EMS, as well as an Associate Editor for the SIAM Journal on Scientific Computing and the SIAM/ASA Journal on Uncertainty Quantification.

Summary

This comprehensive introduction to stochastic partial differential equations incorporates the effects of randomness into real-world models, offering graduate students and researchers powerful tools for understanding uncertainty quantification for risk analysis. MATLAB® codes are included, so that readers can perform computations themselves and solve the test problems discussed.

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.