Fr. 107.00

Geometric Algebra for Computer Graphics

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

Geometric algebra (a Clifford Algebra) has been applied to different branches of physics for a long time but is now being adopted by the computer graphics community and is providing exciting new ways of solving 3D geometric problems.

John Vince (author of numerous books including 'Geometry for Computer Graphics' and 'Vector Analysis for Computer Graphics') has tackled this complex subject in his usual inimitable style, and provided an accessible and very readable introduction.

As well as putting geometric algebra into its historical context, John tackles complex numbers and quaternions; the nature of wedge product and geometric product; reflections and rotations (showing how geometric algebra can offer a powerful way of describing orientations of objects and virtual cameras); and how to implement lines, planes, volumes and intersections. Introductory chapters also look at algebraic axioms, vector algebra and geometric conventions and the book closes with a chapter on how the algebra is applied to computer graphics.

List of contents

Elementary Algebra.- Complex Algebra.- Vector Algebra.- Quaternion Algebra.- Geometric Conventions.- Geometric Algebra.- The Geometric Product.- Reflections and Rotations.- Geometric Algebra and Geometry.- Conformal Geometry.- Applications of Geometric Algebra.- Programming Tools for Geometric Algebra.- Conclusion.

Summary

Geometric algebra (a Clifford Algebra) has been applied to different branches of physics for a long time but is now being adopted by the computer graphics community and is providing exciting new ways of solving 3D geometric problems.

John Vince (author of numerous books including ‘Geometry for Computer Graphics’ and ‘Vector Analysis for Computer Graphics’) has tackled this complex subject in his usual inimitable style, and provided an accessible and very readable introduction.

As well as putting geometric algebra into its historical context, John tackles complex numbers and quaternions; the nature of wedge product and geometric product; reflections and rotations (showing how geometric algebra can offer a powerful way of describing orientations of objects and virtual cameras); and how to implement lines, planes, volumes and intersections. Introductory chapters also look at algebraic axioms, vector algebra and geometric conventions and the book closes with a chapter on how the algebra is applied to computer graphics.

Product details

Authors John Vince, John A. Vince
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 26.10.2010
 
EAN 9781849966979
ISBN 978-1-84996-697-9
No. of pages 256
Dimensions 178 mm x 14 mm x 254 mm
Weight 511 g
Illustrations XVI, 256 p. 125 illus.
Subjects Natural sciences, medicine, IT, technology > IT, data processing > Application software

B, computer science, geometry, Computer Graphics, Mathematical Applications in Computer Science, Algebraic Geometry, Mathematical & statistical software, Computer science—Mathematics, Maths for computer scientists, Math Applications in Computer Science

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.