Fr. 134.00

Superconcentration and Related Topics

English · Hardback

Shipping usually within 2 to 3 weeks (title will be printed to order)

Description

Read more

A certain curious feature of random objects, introduced by the author as "super concentration," and two related topics, "chaos" and "multiple valleys," are highlighted in this book. Although super concentration has established itself as a recognized feature in a number of areas of probability theory in the last twenty years (under a variety of names), the author was the first to discover and explore its connections with chaos and multiple valleys. He achieves a substantial degree of simplification and clarity in the presentation of these findings by using the spectral approach.
Understanding the fluctuations of random objects is one of the major goals of probability theory and a whole subfield of probability and analysis, called concentration of measure, is devoted to understanding these fluctuations. This subfield offers a range of tools for computing upper bounds on the orders of fluctuations of very complicated random variables. Usually, concentration of measure is useful when more direct problem-specific approaches fail; as a result, it has massively gained acceptance over the last forty years. And yet, there is a large class of problems in which classical concentration of measure produces suboptimal bounds on the order of fluctuations. Here lies the substantial contribution of this book, which developed from a set of six lectures the author first held at the Cornell Probability Summer School in July 2012.
The book is interspersed with a sizable number of open problems for professional mathematicians as well as exercises for graduate students working in the fields of probability theory and mathematical physics. The material is accessible to anyone who has attended a graduate course in probability.

List of contents

Preface.- 1.Introduction.- 2.Markov semigroups.- 3.Super concentration and chaos.- 4.Multiple valleys.- 5.Talagrand's method for proving super concentration.- 6.The spectral method for proving super concentration.- 7.Independent flips.- 8.Extremal fields.- 9.Further applications of hypercontractivity.- 10.The interpolation method for proving chaos.- 11.Variance lower bounds.- 12.Dimensions of level sets.- Appendix A. Gaussian random variables.- Appendix B. Hypercontractivity.- Bibliography.- Indices.

About the author

Sourav Chatterjee is a Professor of Statistics and Mathematics at Stanford University. He has previously taught at the University of California at Berkeley and at the Courant Institute of Mathematical Sciences. He has won several international awards for his work in probability theory, including the Rollo Davidson Prize (2010), the Doeblin Prize (2012) and the Loève Prize (2013) and has received the invitation to speak at the International Congress of Mathematicians in 2014.

Summary

A certain curious feature of random objects, introduced by the author as “super concentration,” and two related topics, “chaos” and “multiple valleys,” are highlighted in this book. Although super concentration has established itself as a recognized feature in a number of areas of probability theory in the last twenty years (under a variety of names), the author was the first to discover and explore its connections with chaos and multiple valleys. He achieves a substantial degree of simplification and clarity in the presentation of these findings by using the spectral approach.
Understanding the fluctuations of random objects is one of the major goals of probability theory and a whole subfield of probability and analysis, called concentration of measure, is devoted to understanding these fluctuations. This subfield offers a range of tools for computing upper bounds on the orders of fluctuations of very complicated random variables. Usually, concentration of measure is useful when more direct problem-specific approaches fail; as a result, it has massively gained acceptance over the last forty years. And yet, there is a large class of problems in which classical concentration of measure produces suboptimal bounds on the order of fluctuations. Here lies the substantial contribution of this book, which developed from a set of six lectures the author first held at the Cornell Probability Summer School in July 2012.
The book is interspersed with a sizable number of open problems for professional mathematicians as well as exercises for graduate students working in the fields of probability theory and mathematical physics. The material is accessible to anyone who has attended a graduate course in probability.

Product details

Authors Sourav Chatterjee
Publisher Springer, Berlin
 
Languages English
Product format Hardback
Released 19.11.2013
 
EAN 9783319038858
ISBN 978-3-31-903885-8
No. of pages 156
Dimensions 160 mm x 12 mm x 243 mm
Weight 407 g
Illustrations IX, 156 p.
Series Springer Monographs in Mathematics
Schriftenreihe Markt und Marketing
Springer Monographs in Mathematics
Schriftenreihe Markt und Marketing
Subject Natural sciences, medicine, IT, technology > Mathematics > Probability theory, stochastic theory, mathematical statistics

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.