Read more
The book is a complete, comprehensive description of the modern Physical Theory of Diffraction (PTD) based upon the concept of elementary edge waves. The theory is demonstrated with examples of the diffraction of acoustic and electromagnetic waves at perfectly reflecting objects.
Readers develop the skills to apply PTD to solve various scattering problems. The derived analytic expressions clearly illustrate the physical structure of the scattered field. They additionally describe all of the reflected and diffracted rays and beams, as well as the fields in the vicinity of caustics and foci. Shadow radiation, a fundamental component of PTD, is introduced and proven to contain half the total scattered power. The equivalence relationships between acoustic and electromagnetic diffracted waves are established and emphasized. Throughout the book, the author enables readers to master both the theory and its practical applications.
* Plotted numeric results supplement the theory and facilitate the visualization of individual contributions of distinct parts of the scattering objects to the total diffracted field
* Detailed comments help readers understand and implement all the critical steps of the analytic and numeric calculations
* Problem sets in each chapter give readers an opportunity to analyse and investigate the diffraction phenomena
List of contents
Preface xiii
Foreword to the First Edition xv
Preface to the First Edition xix
Acknowledgments xxi
Introduction xxiii
1 Basic Notions in Acoustic and Electromagnetic Diffraction Problems 1
1.1 Formulation of the Diffraction Problem / 1
1.2 Scattered Field in the Far Zone / 3
1.3 Physical Optics / 7
1.3.1 Definition of Physical Optics / 7
1.3.2 Total Scattering Cross-Section / 10
1.3.3 Optical Theorem / 11
1.3.4 Introducing Shadow Radiation / 12
1.3.5 Shadow Contour Theorem and the Total Scattering Cross-Section / 17
1.3.6 Shadow Radiation and Reflected Field in the Far Zone / 20
1.3.7 Shadow Radiation and Reflection from Opaque Objects / 22
1.4 Electromagnetic Waves / 23
1.4.1 Basic Field Equations and PO Backscattering / 23
1.4.2 PO Field Components: Reflected Field and Shadow Radiation / 26
1.4.3 Electromagnetic Reflection and Shadow Radiation from Opaque Objects / 28
1.5 Physical Interpretations of Shadow Radiation / 31
1.5.1 Shadow Field and Transverse Diffusion / 31
1.5.2 Fresnel Diffraction and Forward Scattering / 32
1.6 Summary of Properties of Physical Optics Approximation / 32
1.7 Nonuniform Component of an Induced Surface Field / 33
Problems / 36
2 Wedge Diffraction: Exact Solution and Asymptotics 49
2.1 Classical Solutions / 49
2.2 Transition to Plane Wave Excitation / 55
2.3 Conversion of the Series Solution to the Sommerfeld Integrals / 57
2.4 The Sommerfeld Ray Asymptotics / 61
2.5 The Pauli Asymptotics / 63
2.6 Uniform Asymptotics: Extension of the Pauli Technique / 68
2.7 Fast Convergent Integrals and Uniform Asymptotics: The "Magic Zero" Procedure / 72
Problems / 76
3 Wedge Diffraction: The Physical Optics Field 87
3.1 Original PO Integrals / 87
3.2 Conversion of PO Integrals to the Canonical Form / 90
3.3 Fast Convergent Integrals and Asymptotics for the PO Diffracted Field / 94
Problems / 100
4 Wedge Diffraction: Radiation by Fringe Components of Surface Sources 103
4.1 Integrals and Asymptotics / 104
4.2 Integral Forms of Functions f (1) and g(1) / 112
4.3 Oblique Incidence of a Plane Wave at a Wedge / 114
4.3.1 Acoustic Waves / 114
4.3.2 Electromagnetic Waves / 118
Problems / 120
5 First-Order Diffraction at Strips and Polygonal Cylinders 123
5.1 Diffraction at a Strip / 124
5.1.1 Physical Optics Part of the Scattered Field / 124
5.1.2 Total Scattered Field / 128
5.1.3 Numerical Analysis of the Scattered Field / 132
5.1.4 First-Order PTD with Truncated Scattering Sources j(1) h / 135
5.2 Diffraction at a Triangular Cylinder / 140
5.2.1 Symmetric Scattering: PO Approximation / 141
5.2.2 Backscattering: PO Approximation / 143
5.2.3 Symmetric Scattering: First-Order PTD Approximation / 145
5.2.4 Backscattering: First-Order PTD Approximation / 148
5.2.5 Numerical Analysis of the Scattered Field / 150
Problems / 152
6 Axially Symmetric Scattering of AcousticWaves at Bodies of Revolution 157
6.1 Diffraction at a Canonical Conic Surface / 158
6.1.1 Integrals for the Scattered Field / 159
6.1.2 Ray Asymptotics / 160
6.1.3 Focal Fields / 166
6.1.4 Bessel Interpolations for the Field u(1) s,h / 167
6.2 Scattering at a Disk / 169
6.2.1 Physical Optics Approximat
About the author
Pyotr Ya. Ufimtsev has been recognized for his outstanding work in the theory of diffraction and propagation of electromagnetic and acoustic waves. Dr. Ufimtsev has been affiliated with the Central Research Radio Engineering Institute of the USSR Defense Ministry, Moscow; the Institute of Radio Engineering and Electronics of the USSR Academy of Sciences, Moscow; the Moscow Aviation Institute; and the University of California at Los Angeles and Irvine. Among Dr. Ufimtsev's many honors and awards are the USSR State Prize and the Leroy Randle Grumman Medal.
Summary
A complete presentation of the modern physical theory of diffraction and its applications, by the world s leading authority on the topic, Physical Theory of Diffraction, Second Edition is a must-have for graduate students, researchers, and engineers in academia and industry.