Read more
Drug addiction remains one of the most important public health problems in western societiesand is a rising concern for developing nations. Over the past 3 decades, experimental research on theneurobiology and psychology of drug addiction has generated a torrent of exciting data, from the molecular up to the behavioral levels. As a result, a new and pressing challenge for addiction research is to formulate a synthetic theoretical framework that goes well beyond mere scientific eclectism to deepen our understanding of drug addiction and to foster our capacity to prevent and to cure drug addiction.Intrigued by the apparent irrational behavior of drug addicts, researchers from a wide range of scientificdisciplines have formulated a plethora of theoretical schemes over the years to understand addiction.However, most of these theories and models are qualitative in nature and are formulated using terms that are often ill-defined. As a result, the empirical validity of these models has been difficult to test rigorously, which has served to generate more controversy than clarity. In this context, as in other scientific fields, mathematical and computational modeling should contribute to the development of more testable and rigorous models of addiction.
List of contents
Foreword: P Dayan.- Part 1 - Pharmacological-based models of addiction.- Chapter 1. Simple deterministic mathematical Model of maintained drug delf-Administration behavior and its pharmacological applications. V.L. Tsibulsky* and A.B. Norman.- Chapter 2. Intermittent Adaptation : A mathematical model of drug tolerance, dependence and addiction. A. Peper .- Chapter 3. Control theory and addictive behavior. D. Newlin, P.A. Regalia, T.I. Seidman, G. Bobashev.- Part 2 - Neurocomputational models of addiction.- Chapter 4. Circuit models of addiction: receptors and neural dynamics in nicotine self-administration. M. Graupner and B. Gutkin.- Chapter 5. N Dual-system learning models and drugs of abuse. N.D. Daw and D.A. Simon.- Chapter 6. Modeling decision-making systems in addiction. Z. Kurth-Nelson and A. D. Redish.- Chapter 7. Computational models of incentive-sensitization in addiction: Dynamic limbic transformation of learning into motivation. J. Zhang, K. C. Berridge, and J. W. Aldridge.- Chapter 8. Understanding addiction as a pathological state of multiple decision making processes: a neurocomputational perspective. M. Keramati, A. Dezfouli and P. Piray.- Part 3 - Economic-based models of addiction.- Chapter 9. Policies and priors. K Friston.- Chapter 10. Toward a Computationally Unified Behavioral-Economic Model of Addiction. E.T. Mueller, L.P. Carter and W.K. Bickel.- Chapter 11. Simulating Patterns of Heroin Addiction within the Social Context of a Local Heroin Market. L. Hoffer, G. Bobashev and R. J Morris.
Summary
Drug addiction remains one of the most important public health problems in western societies
and is a rising concern for developing nations. Over the past 3 decades, experimental research on the
neurobiology and psychology of drug addiction has generated a torrent of exciting data, from the molecular up to the behavioral levels. As a result, a new and pressing challenge for addiction research is to formulate a synthetic theoretical framework that goes well beyond mere scientific eclectism to deepen our understanding of drug addiction and to foster our capacity to prevent and to cure drug addiction.
Intrigued by the apparent irrational behavior of drug addicts, researchers from a wide range of scientific
disciplines have formulated a plethora of theoretical schemes over the years to understand addiction.
However, most of these theories and models are qualitative in nature and are formulated using terms that are often ill-defined. As a result, the empirical validity of these models has been difficult to test rigorously, which has served to generate more controversy than clarity. In this context, as in other scientific fields, mathematical and computational modeling should contribute to the development of more testable and rigorous models of addiction.
Additional text
From the reviews:
“This is a fascinating … new book covering mathematical modeling of various aspects of addiction. … Written and edited by experts in the field, this is a welcome addition to the neuroscientific literature of addictions. … Each chapter concludes with timely and relevant citations of the scientific literature. … This new … book is a stimulating introduction to the field for those with the computational neuroscientific background knowledge to comprehend it.” (Michael Joel Schrift, Doody's Book Reviews, March, 2013)
Report
From the reviews:
"This is a fascinating ... new book covering mathematical modeling of various aspects of addiction. ... Written and edited by experts in the field, this is a welcome addition to the neuroscientific literature of addictions. ... Each chapter concludes with timely and relevant citations of the scientific literature. ... This new ... book is a stimulating introduction to the field for those with the computational neuroscientific background knowledge to comprehend it." (Michael Joel Schrift, Doody's Book Reviews, March, 2013)