Fr. 69.00

Error Inequalities in Polynomial Interpolation and Their Applications

English · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

Given a function x(t) E c{n) [a, bj, points a = al a2 . . . ar = b and subsets aj of {0,1,"',n -1} with L:j=lcard(aj) = n, the classical interpolation problem is to find a polynomial P - (t) of degree at most (n - 1) n l such that P~~l(aj) = x{i)(aj) for i E aj, j = 1,2,"" r. In the first four chapters of this monograph we shall consider respectively the cases: the Lidstone interpolation (a = 0, b = 1, n = 2m, r = 2, al = a2 = {a, 2"", 2m - 2}), the Hermite interpolation (aj = {a, 1,' ", kj - I}), the Abel - Gontscharoff interpolation (r = n, ai ~ ai+l, aj = {j - I}), and the several particular cases of the Birkhoff interpolation. For each of these problems we shall offer: (1) explicit representations of the interpolating polynomial; (2) explicit representations of the associated error function e(t) = x(t) - Pn-l(t); and (3) explicit optimal/sharp constants Cn,k so that the inequalities k I e{k)(t) I C k(b -at- max I x{n)(t) I, 0 k n - 1 n -, a$t$b - are satisfied. In addition, for the Hermite interpolation we shall provide explicit opti mal/sharp constants C(n,p, v) so that the inequality II e(t) lip:::; C(n,p, v) II x{n)(t) 1111, p, v ~ 1 holds.

List of contents

1 Lidstone Interpolation.- 1.1 Introduction.- 1.2 Lidstone Polynomials.- 1.3 Interpolating Polynomial Representations.- 1.4 Error Representations.- 1.5 Error Estimates.- 1.6 Lidstone Boundary Value Problems.- References.- 2 Hermite Interpolation.- 2.1 Introduction.- 2.2 Interpolating Polynomial Representations.- 2.3 Error Representations.- 2.4 Error Estimates.- 2.5 Some Applications.- References.- 3 Abel 7#x2014; Gontscharoff Interpolation.- 3.1 Introduction.- 3.2 Interpolating Polynomial Representations.- 3.3 Error Representations.- 3.4 Error Estimates.- 3.5 Some Applications.- References.- 4 Miscellaneous Interpolation.- 4.1 Introduction.- 4.2 (n, p) and (p, n) Interpolation.- 4.3 (0, 0; m, n - m) Interpolation.- 4.4 (0; m, n - m) Interpolation.- 4.5 (0, 2, 0; m, n - m) Interpolation.- 4.6 (0 : l - 1, l : l + j - 1; m, n - m) Interpolation.- 4.7 (0; Lidstone) Interpolation.- 4.8 (0, 2, 0; Lidstone) Interpolation.- 4.9 (1, 3, 0, 1; Lidstone) Interpolation.- 4.10 (0 : l - 1, l : l + j - 1; Lidstone) Interpolation.- 4.11 (0, 2, 1; Lidstone) Interpolation.- References.- 5 Piecewise - Polynomial Interpolation.- 5.1 Introduction.- 5.2 Preliminaries.- 5.3 Piecewise Hermite Interpolation.- 5.4 Piecewise Lidstone Interpolation.- 5.5 Two Variable Piecewise Hermite Interpolation.- 5.6 Two Variable Piecewise Lidstone Interpolation.- References.- 6 Spline Interpolation.- 6.1 Introduction.- 6.2 Preliminaries.- 6.3 Cubic Spline Interpolation.- 6.4 Quintic Spline Interpolation: ? = 4.- 6.5 Approximated Quintic Splines: ? = 4.- 6.6 Quintic Spline Interpolation: ? = 3.- 6.7 Approximated Quintic Splines: ? = 3.- 6.8 Cubic Lidstone - Spline Interpolation.- 6.9 Quintic Lidstone - Spline Interpolation.- 6.10 L2 - Error Bounds for Spline Interpolation.- 6.11 TwoVariable Spline Interpolation.- 6.12 Two Variable Lidstone - Spline Interpolation.- 6.13 Some Applications.- References.- Name Index.

Product details

Authors R Agarwal, R P Agarwal, R. P. Agarwal, R.P. Agarwal, Patricia J y Wong, Patricia J. Y. Wong, Patricia J.Y. Wong
Publisher Springer Netherlands
 
Languages English
Product format Paperback / Softback
Released 14.11.2013
 
EAN 9789401048965
ISBN 978-94-0-104896-5
No. of pages 366
Illustrations X, 366 p.
Series Mathematics and Its Applications
Mathematics and Its Applications (closed)
Mathematics and its Applications
Subject Natural sciences, medicine, IT, technology > Mathematics > Analysis

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.