Fr. 134.00

Person Re-Identification

English · Hardback

Shipping usually within 2 to 3 weeks (title will be printed to order)

Description

Read more

The first book of its kind dedicated to the challenge of person re-identification, this text provides an in-depth, multidisciplinary discussion of recent developments and state-of-the-art methods. Features: introduces examples of robust feature representations, reviews salient feature weighting and selection mechanisms and examines the benefits of semantic attributes; describes how to segregate meaningful body parts from background clutter; examines the use of 3D depth images and contextual constraints derived from the visual appearance of a group; reviews approaches to feature transfer function and distance metric learning and discusses potential solutions to issues of data scalability and identity inference; investigates the limitations of existing benchmark datasets, presents strategies for camera topology inference and describes techniques for improving post-rank search efficiency; explores the design rationale and implementation considerations of building a practical re-identification system.

List of contents

The Re-Identification Challenge.- Part I: Features and Representations.- Discriminative Image Descriptors for Person Re-Identification.- SDALF.- Re-Identification by Covariance Descriptors.- Attributes-Based Re-Identification.- Person Re-Identification by Attribute-Assisted Clothes Appearance.- Person Re-Identification by Articulated Appearance Matching.- One-Shot Person Re-Identification with a Consumer Depth Camera.- Group Association.- Evaluating Feature Importance for Re-Identification.- Part II: Matching and Distance Metric.- Learning Appearance Transfer for Person Re-Identification.- Mahalanobis Distance Learning for Person Re-Identification.- Dictionary-Based Domain Adaptation Methods for the Re-Identification of Faces.- From Re-Identification to Identity Inference.- Re-Identification for Improved People Tracking.- Part III: Evaluation and Application.- Benchmarking for Person Re-Identification.- Person Re-Identification.- People Search with Textual Queries about Clothing Appearance Attributes.- Large Scale Camera Topology Mapping.- Scalable Multi-Camera Tracking in a Metropolis.

About the author

Dr. Shaogang Gong is a Professor of Visual Computation in the School of Electronic Engineering and Computer Science at Queen Mary University of London, UK. His publications include the successful Springer books Visual Analysis of Behaviour and Video Analytics for Business Intelligence. Dr. Marco Cristani is an Assistant Professor in the Computer Science Department at the University of Verona, Italy. Dr. Shuicheng Yan is an Associate Professor in the Department of Electrical and Computer Engineering at the National University of Singapore. Dr. Chen Change Loy is a Research Assistant Professor in the Department of Information Engineering at the Chinese University of Hong Kong.

Summary

The first book of its kind dedicated to the challenge of person re-identification, this text provides an in-depth, multidisciplinary discussion of recent developments and state-of-the-art methods. Features: introduces examples of robust feature representations, reviews salient feature weighting and selection mechanisms and examines the benefits of semantic attributes; describes how to segregate meaningful body parts from background clutter; examines the use of 3D depth images and contextual constraints derived from the visual appearance of a group; reviews approaches to feature transfer function and distance metric learning and discusses potential solutions to issues of data scalability and identity inference; investigates the limitations of existing benchmark datasets, presents strategies for camera topology inference and describes techniques for improving post-rank search efficiency; explores the design rationale and implementation considerations of building a practical re-identification system.

Additional text

The book is intended for researchers that work, or want to start working on this research topic. … The book is very interesting and allows having an insight into the problem of person re-identification and its potential applications. It provides a presentation of the current state-of-the-are and recent progress on this topic. I think that researchers who intend to work on re-identification can benefit from reading this book. They will be introduced to the many interesting challenges to be faced.” (Donatello Conte, IAPR Newsletter, Vol. 37 (2), 2015)

Report

The book is intended for researchers that work, or want to start working on this research topic. ... The book is very interesting and allows having an insight into the problem of person re-identification and its potential applications. It provides a presentation of the current state-of-the-are and recent progress on this topic. I think that researchers who intend to work on re-identification can benefit from reading this book. They will be introduced to the many interesting challenges to be faced." (Donatello Conte, IAPR Newsletter, Vol. 37 (2), 2015)

Product details

Assisted by Marc Cristani (Editor), Marco Cristani (Editor), Shaogang Gong (Editor), Chen Change Loy (Editor), Shuicheng Yan (Editor), Shuicheng Yan et al (Editor)
Publisher Springer, Berlin
 
Languages English
Product format Hardback
Released 05.11.2013
 
EAN 9781447162957
ISBN 978-1-4471-6295-7
No. of pages 445
Dimensions 169 mm x 241 mm x 21 mm
Weight 885 g
Illustrations XVIII, 445 p. 163 illus., 154 illus. in color.
Series Advances in Computer Vision and Pattern Recognition
Advances in Computer Vision and Pattern Recognition
Advances in Pattern Recognition
Subject Natural sciences, medicine, IT, technology > IT, data processing > Application software

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.