Fr. 134.00

Mathematical Aspects of Superspace

English · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

Over the past five years, through a continually increasing wave of activity in the physics community, supergravity has come to be regarded as one of the most promising ways of unifying gravity with other particle interaction as a finite gauge theory to explain the spectrum of elementary particles. Concurrently im portant mathematical works on the arena of supergravity has taken place, starting with Kostant's theory of graded manifolds and continuing with Batchelor's work linking this with the superspace formalism. There remains, however, a gap between the mathematical and physical approaches expressed by such unanswered questions as, does there exist a superspace having all the properties that physicists require of it? Does it make sense to perform path integral in such a space? It is hoped that these proceedings will begin a dialogue between mathematicians and physicists on such questions as the plan of renormalisation in supergravity. The contributors to the proceedings consist both of mathe maticians and relativists who bring their experience in differen tial geometry, classical gravitation and algebra and also quantum field theorists specialized in supersymmetry and supergravity. One of the most important problems associated with super symmetry is its relationship to the elementary particle spectrum.

List of contents

Non-linear Realization of Supersymmetry.- 1. Introduction.- 2. The Akulov-Volkov field.- 3. Superfields.- 4. Standard fields.- 5. N > 1/N = 1.- 6. N = 1 supergravity.- References.- Fields, Fibre Bundles and Gauge Groups.- 1. Manifolds.- 2. Fibre bundles.- 3. Gauge Groups.- 4. Space-Time.- Path Integration on Manifolds.- 1. Introduction.- 2. Gaussian measures, cylinder set measures, and the Feynman-Kac formula.- 3. Feynman path integrals.- 4. Path integration on Riemannian manifolds.- 5. Gauge invariant equations; diffusion and differential forms.- Acknowledgements, References.- Graded Manifolds and Supermanifolds.- Preface and cautionary note.- 0. Standard notation.- 1. The category GM.- 2. The geometric approach.- 3. Comparisons.- 4. Lie supergroups.- Table: "All I know about supermanifolds".- References.- Aspects of the Geometrical Approach to Supermanifolds.- 1. Abstract.- 2. Building superspace over an arbitrary spacetime.- 3. Super Lie groups.- 4. Compact supermanifolds with non-Abelian fundamental group.- 5. Developments and applications.- References.- Integration on Supermanifolds.- 1. Introduction.- 2. Standard integration theory.- 3. Integration over odd variables.- 4. Superforms.- 5. Integration on Er,s.- 6. Integration on supermanifolds.- References.- Remarks on Batchelor's Theorem.- Classical Supergravity.- 1. Definition of classical supergravity.- 2. Dynamical analysis of classical field theories.- 3. Formal dynamical analysis of classical supergravity.- 4. The exterior algebra formulation of classical supergravity.- 5. Does classical supergravity make sense?.- Appendix: Notations and conventions.- References.- List of participants.

Product details

Assisted by C. J. S. Clarke (Editor), C.j.s. Clarke (Editor), J S Clarke (Editor), C J S Clarke (Editor), A Rosenblum (Editor), A. Rosenblum (Editor), H. J. Seifert (Editor), H. -J. Seifert (Editor), H.J. Seifert (Editor)
Publisher Springer Netherlands
 
Languages English
Product format Paperback / Softback
Released 17.10.2013
 
EAN 9789400964488
ISBN 978-94-0-096448-8
No. of pages 214
Illustrations XII, 214 p.
Series NATO Science Series C: (Closed
Nato Science Series C:
NATO Science Series C:
Subject Natural sciences, medicine, IT, technology > Physics, astronomy > Theoretical physics

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.