Fr. 116.00

The History of Combinatorial Group Theory - A Case Study in the History of Ideas

English · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

One of the pervasive phenomena in the history of science is the development of independent disciplines from the solution or attempted solutions of problems in other areas of science. In the Twentieth Century, the creation of specialties witqin the sciences has accelerated to the point where a large number of scientists in any major branch of science cannot understand the work of a colleague in another subdiscipline of his own science. Despite this fragmentation, the development of techniques or solutions of problems in one area very often contribute fundamentally to solutions of problems in a seemingly unrelated field. Therefore, an examination of this phenomenon of the formation of independent disciplines within the sciences would contrib ute to the understanding of their evolution in modern times. We believe that in this context the history of combinatorial group theory in the late Nineteenth Century and the Twentieth Century can be used effectively as a case study. It is a reasonably well-defined independent specialty, and yet it is closely related to other mathematical disciplines. The fact that combinatorial group theory has, so far, not been influenced by the practical needs of science and technology makes it possible for us to use combinatorial group theory to exhibit the role of the intellectual aspects of the development of mathematics in a clearcut manner. There are other features of combinatorial group theory which appear to make it a reasona ble choice as the object of a historical study.

List of contents

I The Beginning of Combinatorial Group Theory.- I.I Introduction to Part I.- I.2 The Foundations: Dyck's Group-Theoretical Studies.- I.3 The Origin: The Theory of Discontinuous Groups.- I.4 Motivation: The Fundamental Groups of Topological Spaces.- I.5 The Graphical Representation of Groups.- I.6 Precursors of Later Developments.- I.7 Summary.- I.8 Modes of Communication. Growth and Distribution of Research in Group Theory.- I.9 Biographical Notes.- I.10 Notes on Terminology and Definitions.- I.11 Sources.- II The Emergence of Combinatorial Group Theory as an Independent Field.- II. 1 Introduction to Part II.- II.2 Free Groups and Their Automorphisms.- II.3 The Reidemeister-Schreier Method.- II.4 Free Products and Free Products with Amalgamations.- II.5 One-Relator Groups.- II.6 Metabelian Groups and Related Topics.- II.7 Commutator Calculus and the Lower Central Series.- II.8 Varieties of Groups.- II.9 Topological Properties of Groups and Group Extensions.- II.10 Notes on Special Groups.- II.11 Postscript: The Impact of Mathematical Logic.- II.12 Modes of Communication.- II.13 Geographical Distribution of Research and Effects of Migration.- II.14 Organization of Knowledge.- Index of Names.- Index of Subjects.

Summary

One of the pervasive phenomena in the history of science is the development of independent disciplines from the solution or attempted solutions of problems in other areas of science. In the Twentieth Century, the creation of specialties witqin the sciences has accelerated to the point where a large number of scientists in any major branch of science cannot understand the work of a colleague in another subdiscipline of his own science. Despite this fragmentation, the development of techniques or solutions of problems in one area very often contribute fundamentally to solutions of problems in a seemingly unrelated field. Therefore, an examination of this phenomenon of the formation of independent disciplines within the sciences would contrib­ ute to the understanding of their evolution in modern times. We believe that in this context the history of combinatorial group theory in the late Nineteenth Century and the Twentieth Century can be used effectively as a case study. It is a reasonably well-defined independent specialty, and yet it is closely related to other mathematical disciplines. The fact that combinatorial group theory has, so far, not been influenced by the practical needs of science and technology makes it possible for us to use combinatorial group theory to exhibit the role of the intellectual aspects of the development of mathematics in a clearcut manner. There are other features of combinatorial group theory which appear to make it a reasona­ ble choice as the object of a historical study.

Product details

Authors Chandler, B Chandler, B. Chandler, Bruce Chandler, W Magnus, W. Magnus, Wilhelm Magnus
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 16.10.2013
 
EAN 9781461394891
ISBN 978-1-4613-9489-1
No. of pages 234
Dimensions 157 mm x 235 mm x 15 mm
Illustrations VIII, 234 p.
Series Studies in the History of Mathematics and Physical Sciences
Studies in the History of Mathematics and Physical Sciences
Subject Natural sciences, medicine, IT, technology > Mathematics > Arithmetic, algebra

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.