Fr. 96.00

Conjectures in Arithmetic Algebraic Geometry - A Survey

English · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

In this expository text we sketch some interrelations between several famous conjectures in number theory and algebraic geometry that have intrigued math ematicians for a long period of time. Starting from Fermat's Last Theorem one is naturally led to introduce L functions, the main, motivation being the calculation of class numbers. In partic ular, Kummer showed that the class numbers of cyclotomic fields play a decisive role in the corroboration of Fermat's Last Theorem for a large class of exponents. Before Kummer, Dirichlet had already successfully applied his L-functions to the proof of the theorem on arithmetic progressions. Another prominent appearance of an L-function is Riemann's paper where the now famous Riemann Hypothesis was stated. In short, nineteenth century number theory showed that much, if not all, of number theory is reflected by properties of L-functions. Twentieth century number theory, class field theory and algebraic geome try only strengthen the nineteenth century number theorists's view. We just mention the work of E. H~cke, E. Artin, A. Weil and A. Grothendieck with his collaborators. Heeke generalized Dirichlet's L-functions to obtain results on the distribution of primes in number fields. Artin introduced his L-functions as a non-abelian generalization of Dirichlet's L-functions with a generalization of class field theory to non-abelian Galois extensions of number fields in mind.

List of contents

1 The zero-dimensional case: number fields.- 2 The one-dimensional case: elliptic curves.- 3 The general formalism of L-functions, Deligne cohomology and Poincaré duality theories.- 4 Riemann-Roch, K-theory and motivic cohomology.- 5 Regulators, Deligne's conjecture and Beilinson's first conjecture.- 6 Beilinson's second conjecture.- 7 Arithmetic intersections and Beilinson's third conjecture.- 8 Absolute Hodge cohomology, Hodge and Tate conjectures and Abel-Jacobi maps.- 9 Mixed realizations, mixed motives and Hodge and Tate conjectures for singular varieties.- 10 Examples and Results.- 11 The Bloch-Kato conjecture.

About the author










Dr. Wilfried Hulsbergen is teaching at the KMA, Breda,Niederlande.

Product details

Authors Wilfred W J Hulsbergen, Wilfred W. J. Hulsbergen
Publisher Vieweg+Teubner
 
Languages English
Product format Paperback / Softback
Released 07.11.2013
 
EAN 9783663095071
ISBN 978-3-663-09507-1
No. of pages 246
Dimensions 170 mm x 14 mm x 244 mm
Weight 449 g
Illustrations VII, 246 p.
Series Aspects of Mathematics
Aspects of Mathematics
Subject Natural sciences, medicine, IT, technology > Technology > Miscellaneous

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.