Fr. 265.00

Beyond-CMOS Nanodevices 1

English · Hardback

Shipping usually within 3 to 5 weeks (title will be specially ordered)

Description

Read more










This book offers a comprehensive review of the state-of-the-art in innovative Beyond-CMOS nanodevices for developing novel functionalities, logic and memories dedicated to researchers, engineers and students. It particularly focuses on the interest of nanostructures and nanodevices (nanowires, small slope switches, 2D layers, nanostructured materials, etc.) for advanced More than Moore (RF-nanosensors-energy harvesters, on-chip electronic cooling, etc.) and Beyond-CMOS logic and memories applications.

List of contents










ACKNOWLEDGMENTS xiii
GENERAL INTRODUCTION xv
Francis BALESTRA
PART 1. SILION NANOWIRE BIOCHEMICAL SENSORS 1
PART 1. INTRODUCTION 3
Per-Erik HELLSTRÖM and Mikael ÖSTLING
CHAPTER 1. FABRICATION OF NANOWIRES   5
Jens BOLTEN, Per-Erik HELLSTRÖM, Mikael ÖSTLING, Céline TERNON and Pauline SERRE
1.1. Introduction 5
1.2. Silicon nanowire fabrication with electron beam lithography 6
1.2.1. Key requirements 6
1.2.2. Why electron beam lithography?   7
1.2.3. Lithographic requirements 8
1.2.4. Tools, resist materials and development processes  9
1.2.5. Exposure strategies and proximity effect correction 10
1.2.6. Technology limitations and how to circumvent them  11
1.3. Silicon nanowire fabrication with sidewall transfer lithography   14
1.4. Si nanonet fabrication 17
1.4.1. Si NWs fabrication  18
1.4.2. Si nanonet assembling 19
1.4.3. Si nanonet morphology and properties 19
1.5. Acknowledgments 21
1.6. Bibliography 21
CHAPTER 2. FUNCTIONALIZATION OF SI-BASED NW FETs FOR DNA DETECTION  25
Valérie STAMBOULI, Céline TERNON, Pauline SERRE and Louis FRADETAL
2.1. Introduction 25
2.2. Functionalization process 27
2.3. Functionalization of Si nanonets for DNA biosensing   28
2.3.1. Detection of DNA hybridization on the Si nanonet by fluorescence microscopy  31
2.3.2. Preliminary electrical characterizations of NW networks 33
2.4. Functionalization of SiC nanowire-based sensor for electrical DNA biosensing35
2.4.1. SiC nanowire-based sensor functionalization process  35
2.4.2. DNA electrical detection from SiC nanowire-based sensor 38
2.5. Acknowledgments 39
2.6. Bibliography 40
CHAPTER 3. SENSITIVITY OF SILICON NANOWIRE BIOCHEMICAL SENSORS  43
Pierpaolo PALESTRI, Mireille MOUIS, Aryan AFZALIAN, Luca SELMI, Federico PITTINO, Denis FLANDRE and Gérard GHIBAUDO
3.1. Introduction 43
3.1.1. Definitions 43
3.1.2. Main parameters affecting the sensitivity 47
3.2. Sensitivity and noise  47
3.3. Modeling the sensitivity of Si NW biosensors 50
3.3.1. Modeling the electrolyte 52
3.4. Sensitivity of random arrays of 1D nanostructures    54
3.4.1. Electrical characterization 55
3.4.2. Low-frequency noise characterization 56
3.4.3. Simulation of electron conduction in random networks of 1D nanostructures 56
3.4.4. Discussion  59
3.5. Conclusions 59
3.6. Acknowledgments 60
3.7. Bibliography 60
CHAPTER 4. INTEGRATION OF SILICON NANOWIRES WITH CMOS 65
Per-Erik HELLSTRÖM, Ganesh JAYAKUMAR and Mikael ÖSTLING
4.1. Introduction 65
4.2. Overview of CMOS process technology 66
4.3. Integration of silicon nanowire after BEOL 66
4.4. Integration of silicon nanowires in FEOL  67
4.5. Sensor architecture design 69
4.6. Conclusions 71
4.7. Bibliography 72
CHAPTER 5. PORTABLE, INTEGRATED LOCK-IN-AMPLIFIER-BASED SYSTEM FOR REAL-TIME IMPEDIMETRIC MEASUREMENTS ON NANOWIRES BIOSENSORS 73
Michele ROSSI and Marco TARTAGNI
5.1. Introduction 73
5.2. Portable stand-alone system 74
5.3. Integrated impedimetric interface 76
5.4. Impedimetric measurements on nanowire sensors  78
5.5. Bibliography 81
PART 2. NEW MATERIALS, DEVICES AND TECHNOLOGIES FOR ENERGY HARVESTING 83
PART 2. INTRODUCTION 85
Enrico SANGIORGI
CHAPTER 6. VIBRATIONAL ENERGY HARVESTING 89
Luca LARCHER, Saibal ROY, Dhiman MALLICK, Pranay PODDER, Massimo DE VITTORIO, Teresa TODARO, Francesco GUIDO, Alessandro BERTACCHINI, Ronan HINCHET, Julien KERAUDY and Gustavo ARDILA
6.1. Introduction 89
6.2. Piezoelectric energy transducer 91
6.2.1. Introduction 91
6.2.2. State-of-the-art devices and materials  92
6.2.3. MEMS piezoelectric vibration energy harvesting transducers   95
6.2.4. RMEMS prototypes characterization and discussions of experimental results 102
6.2.5. Near field characterization techniques 104
6.2.6. Dedicated electro-mechanical models for piezoelectric transducer design 106
6.3. Electromagnetic energy transducers   109
6.3.1. Introduction 109
6.3.2. State-of-the-art devices and materials  109
6.3.3. Vibration energy harvester exploiting both the piezoelectric and electromagnetic effect 122
6.3.4. Device design 125
6.4. Bibliography 128
CHAPTER 7. THERMAL ENERGY HARVESTING   135
Mireille MOUIS, Emigdio CHÁVEZ-ÁNGEL, Clivia SOTOMAYOR-TORRES, Francesc ALZINA, Marius V. COSTACHE, Androula G. NASSIOPOULOU, Katerina VALALAKI, Emmanouel HOURDAKIS, Sergio O. VALENZUELA, Bernard VIALA, Dmitry ZAKHAROV, Andrey SHCHEPETOV and Jouni AHOPELTO
7.1. Introduction 135
7.1.1. Basics of thermoelectric conversion 136
7.1.2. Strategies to increase ZT 137
7.1.3. Heavy-metal-free TE generation  140
7.1.4. Alternatives to TE harvesting for self-powered solid-state microsystems 141
7.2. Thermal transport at nanoscale 142
7.2.1. Brief review of nanoscale thermal conductivity  143
7.2.2. The effect of phonon confinement  146
7.2.3. Fabrication of ultrathin free-standing silicon membranes 153
7.2.4. Advanced methods of characterizing phonon dispersion, lifetimes and thermal conductivity    156
7.3. Porous silicon for thermal insulation on silicon wafers  172
7.3.1. Introduction 172
7.3.2. Thermal conductivity of nanostructured porous Si  172
7.3.3. Thermal isolation using thick porous Si layers    176
7.3.4. Thermoelectric generator using porous Si thermal isolation 177
7.4. Spin dependent thermoelectric effects   185
7.4.1. Physical principle and interest for thermal energy harvesting    186
7.4.2. Demonstration of the magnon drag effect 188
7.5. Composites of thermal shape memory alloy and piezoelectric materials   192
7.5.1. Introduction 192
7.5.2. Physical principle and interest for thermal energy harvesting    193
7.5.3. Novelty and realizations 194
7.5.4. Theoretical considerations 195
7.5.5. Examples of use  196
7.5.6. Summary of composite harvesting by the combination of SMA and piezoelectric materials 204
7.6. Conclusions 204
7.7. Bibliography 205
CHAPTER 8. NANOWIRE BASED SOLAR CELLS   221
Mauro ZANUCCOLI, Anne KAMINSKI-CACHOPO, Jérôme MICHALLON, Vincent CONSONNI, Igar SEMENIKHIN, Mehdi DAANOUNE, Frédérique DUCROQUET, David KOHEN, Christine MORIN and Claudio FIEGNA
8.1 Introduction   221
8.2. Design of NW-based solar cells    223
8.2.1. Geometrical optimization of NW-based solar cells by numerical simulations  223
8.2.2. TCAD simulation of NW-based solar cells 230
8.3. Fabrication and opto-electrical characterization of NW-based solar cells 235
8.3.1. Elaboration of NW-based solar cells  235
8.3.2. Opto-electrical characterization of NW-based solar cells 236
8.4 Conclusion   243
8.5 Acknowledgments 243
8.6 Bibliography 243
CHAPTER 9. SMART ENERGY MANAGEMENT AND CONVERSION 249
Wensi WANG, James F. ROHAN, Ningning WANG, Mike HAYES, Aldo ROMANI, Enrico MACRELLI, Michele DINI, Matteo FILIPPI, Marco TARTAGNI and Denis FLANDRE
9.1. Introduction 249
9.2. Power management solutions for energy harvesting devices 251
9.2.1. Ultra-low voltage thermoelectric energy harvesting 251
9.2.2. Sub-1mW photovoltaic energy harvesting 256
9.2.3. Piezoelectric and micro-electromagnetic energy harvesting 260
9.2.4. DC/DC power management for future micro-generator 262
9.3. Sub-mW energy storage solutions    266
9.4. Conclusions 270
9.5. Bibliography 271
PART 3. ON-CHIP ELECTRONIC COOLING    277
CHAPTER 10. TUNNEL JUNCTION ELECTRONIC COOLERS    279
Martin PREST, James RICHARDSON-BULLOCK, Terry WHALL, Evan PARKER and David LEADLEY
10.1. Introduction and motivation 279
10.1.1. Existing cryogenic technology   280
10.2. Tunneling junctions as coolers    281
10.2.1. The NIS junction  281
10.2.2. Cooling power 284
10.2.3. Thermometry 286
10.2.4. The superconductor-insulator-normal metal-insulator-superconductor (SINIS) structure  287
10.2.5. Double junction superconductor-silicon-superconductor (SSmS) cooler 288
10.3. Limitations to cooling  289
10.3.1. States within the superconductor gap 290
10.3.2. Joule heating 291
10.3.3. Series resistance 291
10.3.4. Quasi-particle-related heating   293
10.3.5. Andreev reflection 295
10.4. Heavy fermion-based coolers 297
10.5. Summary   299
10.6. Bibliography  300
CHAPTER 11. SILICON-BASED COOLING ELEMENTS 303
David LEADLEY, Martin PREST, Jouni AHOPELTO, Tom BRIEN, David GUNNARSSON, Phil MAUSKOPF, Juha MUHONEN, Maksym MYRONOV, Hung NGUYEN, Evan PARKER, Mika PRUNNILA, James RICHARDSON-BULLOCK, Vishal SHAH, Terry WHALL and Qing-Tai ZHAO
11.1. Introduction to semiconductor-superconductor tunnel junction coolers   303
11.2. Silicon-based Schottky barrier junctions  304
11.3. Carrier-phonon coupling in strained silicon 308
11.3.1. Measurement of electron-phonon coupling constant  312
11.4. Strained silicon Schottky barrier mK coolers 315
11.5. Silicon mK coolers with an oxide barrier [GUN 13]   318
11.5.1. Reduction of sub-gap leakage   318
11.5.2. Effects of strain 319
11.6. The silicon cold electron bolometer   321
11.7. Integration of detector and electronics  324
11.8. Summary and future prospects    325
11.9. Acknowledgments 327
11.10 Bibliography  327
CHAPTER 12. THERMAL ISOLATION THROUGH NANOSTRUCTURING. 331
David LEADLEY, Vishal SHAH, Jouni AHOPELTO, Francesc ALZINA, Emigdio CHÁVEZ-ÁNGEL, Juha MUHONEN, Maksym MYRONOV, Androula G. NASSIOPOULOU, Hung NGUYEN, Evan PARKER, Jukka PEKOLA, Martin PREST, Mika PRUNNILA, Juan Sebastian REPARAZ, Andrey SHCHEPETOV, Clivia SOTOMAYOR-TORRES, Katerina VALALAKI and Terry WHALL
12.1. Introduction 331
12.2. Lattice cooling by physical nanostructuring 331
12.3. Porous Si membranes as cryogenic thermal isolation platforms 337
12.3.1. Porous Si micro-coldplates    337
12.3.2. Porous Si thermal conductivity  339
12.4. Crystalline membrane platforms    343
12.4.1. Strained germanium membranes   343
12.4.2. Thermal conductance measurements in Si and Ge membranes    350
12.4.3. Epitaxy-compatible thermal isolation platform  355
12.5. Summary of thermal conductance measurements    355
12.6. Acknowledgments. 358
12.7. Bibliography  358
PART 4. NEW MATERIALS, DEVICES AND TECHNOLOGIES FOR RF APPLICATIONS  365
PART 4. INTRODUCTION 367
Androula G. NASSIOPOULOU
CHAPTER 13. SUBSTRATE TECHNOLOGIES FOR SILICON-INTEGRATED RF AND MM-WAVE PASSIVE DEVICES  373
Androula G. NASSIOPOULOU, Panagiotis SARAFIS, Jean-Pierre RASKIN, Hanza ISSA, Philippe FERRARI
13.1. Introduction 373
13.2. High-resistivity Si substrate for RF   374
13.2.1. Losses along coplanar waveguide transmission lines 375
13.2.2. Crosstalk  380
13.2.3. Nonlinearities along CPW lines   384
13.3. Porous Si substrate technology    385
13.3.1. General properties of porous Si   386
13.3.2. Dielectric properties of porous Si  389
13.3.3. Broadband electrical characterization of CPWT Lines on porous Si 393
13.3.4. Inductors on porous Si397
13.3.5. Antennas on porous Si399
13.4. Comparison between HR Si and local porous Si substrate technologies 400
13.4.1. Comparison of similar CPW TLines on different substrates    400
13.4.2. Comparison of inductors on different RF substrates  404
13.5. Design of slow-wave CPWs and filters on porous silicon 404
13.5.1. Slow-wave CPW TLines on porous Si 405
13.5.2. Simulation results for S-CPW TLines 406
13.5.3. Stepped impedance low-pass filter on porous silicon 408
13.5.4. Simulation results for filters    409
13.6. Conclusion 411
13.7. Acknowledgments 411
13.8. Bibliography  411
CHAPTER 14. METAL NANOLINES AND ANTENNAS FOR RF AND MM-WAVE APPLICATIONS 419
Philippe BENECH, Chuan-Lun HSU, Gustavo ARDILA, Panagiotis SARAFIS and Androula G. NASSIOPOULOU
14.1. Introduction 419
14.2. Metal nanowires (nanolines) 420
14.2.1. General properties  420
14.2.2. Transmission nanolines in microstrip configuration: characterization and modeling 426
14.2.3. Transmission nanolines in CPW configuration: fabrication, characterization and modeling 430
14.2.4. Characterization up to 200 GHz   440
14.3. Antennas   441
14.3.1. On-chip antennas: general    441
14.3.2. On-chip antenna characterization method 443
14.3.3. Measurement results 444
14.3.4. Discussion on antenna results   451
14.4. Conclusion 451
14.5. Acknowledgments 452
14.6. Bibliography  452
CHAPTER 15. NANOSTRUCTURED MAGNETIC MATERIALS FOR HIGH-FREQUENCY APPLICATIONS 457
Saibal ROY, Jeffrey GODSELL and Tuhin MAITY
15.1. Introduction 457
15.2. Power conversion and integration   457
15.3. Materials and integration 459
15.4. Controlling the magnetic properties   463
15.5. Magnetic properties of nanocomposite materials    467
15.6. Magnetic properties of nanomodulated continuous films  470
15.7. Conclusion 478
15.8. Bibliography  479
LIST OF AUTHORS  485
INDEX 493


About the author










Francis Balestra received the M.S. and Ph.D. degrees in electronics from the Institut Polytechnique, Grenoble, France, in 1982 and 1985, respectively. He is a member of the European Academy of Sciences, of the Advisory Committee of the Chinese Journal of Semiconductors and Chinese Physics B and received the Blondel Medal (French SEE) in 2001. He is also member of the European ENIAC Scientific Community Council and several ENIAC/AENEAS Working Groups. F. Balestra has coauthored over 130 publications in international scientific journals, 240 communications at international conferences (more than 70 invited papers and review articles), and 20 books or chapters.


Summary

This book offers a comprehensive review of the state-of-the-art in innovative Beyond-CMOS nanodevices for developing novel functionalities, logic and memories dedicated to researchers, engineers and students.

Product details

Authors F Balestra, Francis Balestra
Assisted by Francis Balestra (Editor), Francis (Institut Polytechnique Balestra (Editor)
Publisher ISTE Ltd and John Wiley & Sons Inc
 
Languages English
Product format Hardback
Released 23.05.2014
 
EAN 9781848216549
ISBN 978-1-84821-654-9
No. of pages 528
Dimensions 165 mm x 236 mm x 31 mm
Weight 910 g
Series NanoScience and Technology
NanoScience and Technology
Subject Natural sciences, medicine, IT, technology > Technology > Electronics, electrical engineering, communications engineering

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.