Fr. 134.00

Periodic Solutions of Singular Lagrangian Systems

English · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

Thismonographdealswiththeexistenceofperiodicmotionsof Lagrangiansystemswith ndegreesoffreedom ij + V'(q) =0, where Visasingularpotential.Aprototypeofsuchaproblem, evenifitisnottheonlyphysicallyinterestingone,istheKepler problem .. q 0 q+yqr= . This,jointlywiththemoregeneralN-bodyproblem,hasalways beentheobjectofagreatdealofresearch.Mostofthoseresults arebasedonperturbationmethods,andmakeuseofthespecific featuresoftheKeplerpotential. OurapproachismoreonthelinesofNonlinearFunctional Analysis:ourmainpurposeistogiveafunctionalframefor systemswithsingularpotentials,includingtheKeplerandthe N-bodyproblemasparticularcases.PreciselyweuseCritical PointTheorytoobtainexistenceresults,qualitativeinnature, whichholdtrueforbroadclassesofpotentials.Thishighlights thatthevariationalmethods,whichhavebeenemployedtoob tainimportantadvancesinthestudyofregularHamiltonian systems,canbesuccessfallyusedtohandlesingularpotentials aswell. Theresearchonthistopicisstillinevolution,andtherefore theresultswewillpresentarenottobeintendedasthefinal ones. Indeedamajorpurposeofourdiscussionistopresent methodsandtoolswhichhavebeenusedinstudyingsuchprob lems. Vlll PREFACE Partofthematerialofthisvolumehasbeenpresentedina seriesoflecturesgivenbytheauthorsatSISSA,Trieste,whom wewouldliketothankfortheirhospitalityandsupport. We wishalsotothankUgoBessi,PaoloCaldiroli,FabioGiannoni, LouisJeanjean,LorenzoPisani,EnricoSerra,KazunakaTanaka, EnzoVitillaroforhelpfulsuggestions. May26,1993 Notation n 1.For x, yE IR , x. ydenotestheEuclideanScalarproduct, and IxltheEuclideannorm. 2. meas(A)denotestheLebesguemeasureofthesubset Aof n IR 3.Wedenoteby ST =[0,T]/{a,T}theunitarycirclepara metrizedby t E[0,T].Wewillalsowrite SI= ST=I. n 1 n 4.Wewillwrite sn = {xE IR + : Ixl =I}andn = IR {O}. n 5.Wedenoteby LP([O,T], IR ),1~ p~+00,theLebesgue spaces,equippedwiththestandardnorm lIulip. l n l n 6. H (ST, IR )denotestheSobolevspaceof u E H ,2(0, T; IR ) suchthat u(O) = u(T).Thenormin HIwillbedenoted by lIull2 = lIull~ + lIull~· 7.Wedenoteby(·1·)and11·11respectivelythescalarproduct andthenormoftheHilbertspace E. 8.For uE E, EHilbertorBanachspace,wedenotetheball ofcenter uandradiusrby B(u,r) = {vE E: lIu- vii~ r}.Wewillalsowrite B = B(O, r). r 1 1 9.WesetA (n) = {uE H (St,n)}. k 10.For VE C (1Rxil,IR)wedenoteby V'(t, x)thegradient of Vwithrespectto x. l 11.Given f E C (M,IR), MHilbertmanifold,welet r = {uEM: f(u) ~ a}, f-l(a,b) = {uE E : a~ f(u) ~ b}. x NOTATION 12.Given f E C1(M,JR), MHilbertmanifold,wewilldenote by Zthesetofcriticalpointsof fon Mandby Zctheset Z U f-l(c, c). 13.Givenasequence UnE E, EHilbertspace,by Un ---"" Uwe willmeanthatthesequence Unconvergesweaklyto u. 14.With Pds. (E)wewilldenotethesetoflinearandcontinuous operatorson E. 15.With Ck''''(A,JR)wewilldenotethesetoffunctions ffrom AtoJR, ktimesdifferentiablewhosek-derivativeisHolder continuousofexponent0:. Main Assumptions Wecollecthere,forthereader'sconvenience,themainassump tionsonthepotential Vusedthroughoutthebook. (VO) VEC1(lRXO,lR),V(t+T,x)=V(t,X) V(t,x)ElRXO, (VI) V(t,x)

List of contents

I Preliminaries.- II Singular Potentials.- III The Strongly Attractive Case.- IV The Weakly Attractive Case.- V Orbits with Prescribed Energy.- VI The N-Body Problem.- VII Perturbation Results.

Product details

Authors Ambrosetti, A Ambrosetti, A. Ambrosetti, V Coti-Zelati, V. Coti-Zelati
Publisher Springer, Basel
 
Languages English
Product format Paperback / Softback
Released 07.11.2013
 
EAN 9781461267058
ISBN 978-1-4612-6705-8
No. of pages 160
Illustrations XII, 160 p.
Series Progress in Nonlinear Differential Equations and Their Applications
Progress in Nonlinear Differential Equations and Their Applications
Subject Natural sciences, medicine, IT, technology > Mathematics > Analysis

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.