Fr. 238.00

Robust Control Design Using H- Methods

English · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

This is a unified collection of important recent results for the design of robust controllers for uncertain systems, primarily based on H8 control theory or its stochastic counterpart, risk sensitive control theory. Two practical applications are used to illustrate the methods throughout.

List of contents

1. Introduction.- 1.1 The concept of an uncertain system.- 1.2 Overview of the book.- 2. Uncertain systems.- 2.1 Introduction.- 2.2 Uncertain systems with norm-bounded uncertainty.- 2.3 Uncertain systems with integral quadratic constraints.- 2.4 Stochastic uncertain systems.- 3. H? control and related preliminary results.- 3.1 Riccati equations.- 3.2 H? control.- 3.3 Risk-sensitive control.- 3.4 Quadratic stability.- 3.5 A connection between H? control and the absolute stabilizability of uncertain systems.- 4. The S-procedure.- 4.1 Introduction.- 4.2 An S-procedure result for a quadratic functional and one quadratic constraint.- 4.3 An S-procedure result for a quadratic functional and k quadratic constraints.- 4.4 An S-procedure result for nonlinear functionals.- 4.5 An S-procedure result for averaged sequences.- 4.6 An S-procedure result for probability measures with constrained relative entropies.- 5. Guaranteed cost control of time-invariant uncertain systems.- 5.1 Introduction.- 5.2 Optimal guaranteed cost control for uncertain linear systems with norm-bounded uncertainty.- 5.3 State-feedback minimax optimal control of uncertain systems with structured uncertainty.- 5.4 Output-feedback minimax optimal control of uncertain systems with unstructured uncertainty.- 5.5 Guaranteed cost control via a Lyapunov function of the Lur'e-Postnikov form.- 5.6 Conclusions.- 6. Finite-horizon guaranteed cost control.- 6.1 Introduction.- 6.2 The uncertainty averaging approach to state-feedback minimax optimal control.- 6.3 The uncertainty averaging approach to output-feedback optimal guaranteed cost control.- 6.4 Robust control with a terminal state constraint.- 6.5 Robust control with rejection of harmonic disturbances.- 7. Absolute stability, absolute stabilization andstructured dissipativity.- 7.1 Introduction.- 7.2 Robust stabilization with a Lyapunov function of the Lur'e-Postnikov form.- 7.3 Structured dissipativity and absolute stability for nonlinear uncertain systems.- 7.4 Conclusions.- 8. Robust control of stochastic uncertain systems.- 8.1 Introduction.- 8.2 H? control of stochastic systems with multiplicative noise.- 8.3 Absolute stabilization and minimax optimal control of stochastic uncertain systems with multiplicative noise.- 8.4 Output-feedback finite-horizon minimax optimal control of stochastic uncertain systems with additive noise.- 8.5 Output-feedback infinite-horizon minimax optimal control of stochastic uncertain systems with additive noise.- 8.6 Conclusions.- 9. Nonlinear versus linear control.- 9.1 Introduction.- 9.2 Nonlinear versus linear control in the absolute stabilizability of uncertain systems with structured uncertainty.- 9.3 Decentralized robust state-feedback H? control for uncertain large-scale systems.- 9.4 Nonlinear versus linear control in the robust stabilizability of linear uncertain systems via a fixed-order output-feedback controller.- 9.5 Simultaneous H? control of a finite collection of linear plants with a single nonlinear digital controller.- 9.6 Conclusions.- 10. Missile autopilot design via minimax optimal control of stochastic uncertain systems.- 10.1 Introduction.- 10.2 Missile autopilot model.- 10.3 Robust controller design.- 10.4 Conclusions.- 11. Robust control of acoustic noise in a duct via minimax optimal LQG control.- 11.1 Introduction.- 11.2 Experimental setup and modeling.- 11.3 Controller design.- 11.4 Experimental results.- 11.5 Conclusions.- A. Basic duality relationships for relative entropy.- B. Metrically transitive transformations.- References.

Summary

This is a unified collection of important recent results for the design of robust controllers for uncertain systems, primarily based on H8 control theory or its stochastic counterpart, risk sensitive control theory. Two practical applications are used to illustrate the methods throughout.

Product details

Authors Ian Petersen, Ian R Petersen, Ian R. Petersen, Andr Savkin, Andrey V. Savkin, Valery Ugrinovskii, Valery A Ugrinovskii, Valery A. Ugrinovskii
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 16.10.2013
 
EAN 9781447111443
ISBN 978-1-4471-1144-3
No. of pages 451
Dimensions 155 mm x 25 mm x 235 mm
Weight 710 g
Illustrations XVI, 451 p.
Series Communications and Control Engineering
Communications and Control Engineering
Subjects Humanities, art, music > Art > Interior design, design
Natural sciences, medicine, IT, technology > Technology > Electronics, electrical engineering, communications engineering

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.