Fr. 135.00

Cohomological Theory of Dynamical Zeta Functions

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

Dynamical zeta functions are associated to dynamical systems with a countable set of periodic orbits. The dynamical zeta functions of the geodesic flow of lo cally symmetric spaces of rank one are known also as the generalized Selberg zeta functions. The present book is concerned with these zeta functions from a cohomological point of view. Originally, the Selberg zeta function appeared in the spectral theory of automorphic forms and were suggested by an analogy between Weil's explicit formula for the Riemann zeta function and Selberg's trace formula ([261]). The purpose of the cohomological theory is to understand the analytical properties of the zeta functions on the basis of suitable analogs of the Lefschetz fixed point formula in which periodic orbits of the geodesic flow take the place of fixed points. This approach is parallel to Weil's idea to analyze the zeta functions of pro jective algebraic varieties over finite fields on the basis of suitable versions of the Lefschetz fixed point formula. The Lefschetz formula formalism shows that the divisors of the rational Hassc-Wcil zeta functions are determined by the spectra of Frobenius operators on l-adic cohomology.

List of contents

1. Introduction.- 2. Preliminaries.- 3. Zeta Functions of the Geodesic Flow of Compact Locally Symmetric Manifolds.- 4. Operators and Complexes.- 5. The Verma Complexes on SY and SX.- 6. Harmonic Currents and Canonical Complexes.- 7. Divisors and Harmonic Currents.- 8. Further Developments and Open Problems.- 9. A Summary of Important Formulas.- Index of Equations.

Summary

Dynamical zeta functions are associated to dynamical systems with a countable set of periodic orbits. The dynamical zeta functions of the geodesic flow of lo cally symmetric spaces of rank one are known also as the generalized Selberg zeta functions. The present book is concerned with these zeta functions from a cohomological point of view. Originally, the Selberg zeta function appeared in the spectral theory of automorphic forms and were suggested by an analogy between Weil's explicit formula for the Riemann zeta function and Selberg's trace formula ([261]). The purpose of the cohomological theory is to understand the analytical properties of the zeta functions on the basis of suitable analogs of the Lefschetz fixed point formula in which periodic orbits of the geodesic flow take the place of fixed points. This approach is parallel to Weil's idea to analyze the zeta functions of pro jective algebraic varieties over finite fields on the basis of suitable versions of the Lefschetz fixed point formula. The Lefschetz formula formalism shows that the divisors of the rational Hassc-Wcil zeta functions are determined by the spectra of Frobenius operators on l-adic cohomology.

Product details

Authors Andreas Juhl
Publisher Springer, Basel
 
Languages English
Product format Paperback / Softback
Released 22.09.2013
 
EAN 9783034895248
ISBN 978-3-0-3489524-8
No. of pages 709
Dimensions 157 mm x 236 mm x 50 mm
Weight 1372 g
Illustrations X, 709 p.
Series Progress in Mathematics
Progress in Mathematics
Subjects Natural sciences, medicine, IT, technology > Mathematics > Analysis

Analysis, C, Mathematics and Statistics, measure, Harmonic analysis

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.