Fr. 135.00

Multistate Systems Reliability Theory With Applications

English · Hardback

Shipping usually within 1 to 3 weeks (not available at short notice)

Description

Read more

Informationen zum Autor Bent Natvig is Professor in Mathematics Statistics, University of Oslo. Member of Research Education Committee, Faculty of Mathematics and Natural Sciences, 2000-. Member of User Committee, G.H. Sverdrup's Building, 2000-. Guest/Invited speaker at numerous lectures around Europe and America for the past 30 years. Speaking on reliability theory and mathematics and statistics. Research interests include: Reliability theory and risk analysis, Bayesian statistics, Bayesian forecasting and dynamic models and queuing theory. Currently Associate Editor of Methodology and Computing in Applied Probability. Klappentext Most books in reliability theory are dealing with a description of component and system states as binary: functioning or failed. However, many systems are composed of multi-state components with different performance levels and several failure modes. There is a great need in a series of applications to have a more refined description of these states, for instance, the amount of power generated by an electrical power generation system or the amount of gas that can be delivered through an offshore gas pipeline network. The book provides a descriptive account of various types of multistate system, bound-for multistate systems, probabilistic modeling of monitoring and maintenance of multistate systems with components along with examples of applications. Key Features: Looks at modern multistate reliability theory with applications covering a refined description of components and system states. Presents new research, such as Bayesian assessment of system availabilities and measures of component importance. Complements the methodological description with two substantial case studies. Reliability engineers and students involved in the field of reliability, applied mathematics and probability theory will benefit from this book. Zusammenfassung While most books on reliability deal with a description of component and system states as binary, i.e. , functioning or failed, many systems are composed of multistate components with different performance levels and several failure modes. This book addresses the need in a number of applications for a more refined description of these states. Inhaltsverzeichnis Preface. Acknowledgements. List of abbreviations. 1 Introduction. 1.1 Basic notation and two simple examples. 1.2 An offshore electrical power generation system. 1.3 Basic definitions from binary theory. 1.4 Early attempts to define multistate coherent systems. 1.5 Exercises. 2 Basics. 2.1 Multistate monotone and coherent systems. 2.2 Binary type multistate systems. 2.3 Multistate minimal path and cut vectors. 2.4 Stochastic performance of multistate monotone and coherent systems. 2.5 Stochastic performance of binary type multistate strongly coherent systems. 2.6 Exercises. 3 Bounds for system availabilities and unavailabilities. 3.1 Performance processes of the components and the system. 3.2 Basic bounds in a time interval. 3.3 Improved bounds in a time interval using modular decompositions. 3.4 Improved bounds at a fixed point of time using modular decompositions. 3.5 Strict and exactly correct bounds. 3.6 Availabilities and unavailabilities of the components. 3.7 The simple network system revisited. 3.8 The offshore electrical power generation system revisited. 4 An offshore gas pipeline network. 4.1 Description of the system. 4.2 Bounds for system availabilities and unavailabilities. 5 Bayesian assessment of system availabilities. 5.1 Basic ideas. 5.2 Moments for posterior component availabilities and unavailabilities. 5.3 Bounds for moments for system availabilit...

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.