Fr. 146.00

Moduli in Modern Mapping Theory

English · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

The purpose of this book is to present modern developments and applications of the techniques of modulus or extremal length of path families in the study of m- n pings in R , n? 2, and in metric spaces. The modulus method was initiated by Lars Ahlfors and Arne Beurling to study conformal mappings. Later this method was extended and enhanced by several other authors. The techniques are geom- ric and have turned out to be an indispensable tool in the study of quasiconformal and quasiregular mappings as well as their generalizations. The book is based on rather recent research papers and extends the modulus method beyond the classical applications of the modulus techniques presented in many monographs. Helsinki O. Martio Donetsk V. Ryazanov Haifa U. Srebro Holon E. Yakubov 2007 Contents 1 Introduction and Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Moduli and Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2. 2 Moduli in Metric Spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2. 3 Conformal Modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2. 4 Geometric De nition for Quasiconformality . . . . . . . . . . . . . . . . . . . . 13 2. 5 Modulus Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2. 6 Upper Gradients and ACC Functions . . . . . . . . . . . . . . . . . . . . . . . . . 17 p n 2. 7 ACC Functions in R and Capacity. . . . . . . . . . . . . . . . . . . . . . . . . . . 21 p 2. 8 Linear Dilatation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2. 9 Analytic De nition for Quasiconformality. . . . . . . . . . . . . . . . . . . . . . 31 n 2. 10 R as a Loewner Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2. 11 Quasisymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3 Moduli and Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3. 2 QED Exceptional Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3. 3 QED Domains and Their Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3. 4 UniformandQuasicircleDomains . . . . . . . . . . . . . . . . . . . . . . . . . . . .

List of contents

and Notation.- Moduli and Capacity.- Moduli and Domains.- Q-Homeomorphisms with Q? Lloc1.- Q-homeomorphisms with Q in BMO.- More General Q-Homeomorphisms.- Ring Q-Homeomorphisms.- Mappings with Finite Length Distortion (FLD).- Lower Q-Homeomorphisms.- Mappings with Finite Area Distortion.- On Ring Solutions of the Beltrami Equation.- Homeomorphisms with Finite Mean Dilatations.- On Mapping Theory in Metric Spaces.

Summary

Based on recent research papers, this book presents a modern account of mapping theory with emphasis on quasiconformal mapping and its generalizations. It contains an extensive bibliography.

Additional text

From the reviews:
“This book is a very welcome addition to the literature on MMT. The topic is fresh and there are a lot of possibilities for new research, as for instance this book itself demonstrates. … best suited to graduate students of mathematical analysis and related topics. … very valuable for all researchers of geometric function theory. Every mathematics graduate library should have a copy of this book.” (Matti Vuorinen, Zentralblatt MATH, Vol. 1175, 2010)

Report

From the reviews:
"This book is a very welcome addition to the literature on MMT. The topic is fresh and there are a lot of possibilities for new research, as for instance this book itself demonstrates. ... best suited to graduate students of mathematical analysis and related topics. ... very valuable for all researchers of geometric function theory. Every mathematics graduate library should have a copy of this book." (Matti Vuorinen, Zentralblatt MATH, Vol. 1175, 2010)

Product details

Authors Oll Martio, Olli Martio, Vladimi Ryazanov, Vladimir Ryazanov, Uri Srebro, Uri et al Srebro, Eduard Yakubov
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 24.01.2011
 
EAN 9781441927552
ISBN 978-1-4419-2755-2
No. of pages 367
Dimensions 156 mm x 234 mm x 19 mm
Weight 574 g
Illustrations XII, 367 p. 12 illus.
Series Springer Monographs in Mathematics
Springer Monographs in Mathematics
Subjects Natural sciences, medicine, IT, technology > Mathematics > Analysis

Analysis, C, Mathematics and Statistics, Functional Analysis, Analysis (Mathematics), Functional analysis & transforms, Mathematical analysis, bounded mean oscillation;metric space;quasiconformal mapping

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.