Fr. 49.90

Coarse Geometry and Randomness - École d'Été de Probabilités de Saint-Flour XLI - 2011

English · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

These lecture notes study the interplay between randomness and geometry of graphs. The first part of the notes reviews several basic geometric concepts, before moving on to examine the manifestation of the underlying geometry in the behavior of random processes, mostly percolation and random walk.
The study of the geometry of infinite vertex transitive graphs, and of Cayley graphs in particular, is fairly well developed. One goal of these notes is to point to some random metric spaces modeled by graphs that turn out to be somewhat exotic, that is, they admit a combination of properties not encountered in the vertex transitive world. These include percolation clusters on vertex transitive graphs, critical clusters, local and scaling limits of graphs, long range percolation, CCCP graphs obtained by contracting percolation clusters on graphs, and stationary random graphs, including the uniform infinite planar triangulation (UIPT) and the stochastic hyperbolic planar quadrangulation (SHIQ).

List of contents

Isoperimetry and expansions in graphs.- Several metric notions.- The hyperbolic plane and hyperbolic graphs.- More on the structure of vertex transitive graphs.- Percolation on graphs.- Local limits of graphs.- Random planar geometry.- Growth and isoperimetric profile of planar graphs.- Critical percolation on non-amenable groups.- Uniqueness of the infinite percolation cluster.- Percolation perturbations.- Percolation on expanders.- Harmonic functions on graphs.- Nonamenable Liouville graphs.

Summary

These lecture notes study the interplay between randomness and geometry of graphs. The first part of the notes reviews several basic geometric concepts, before moving on to examine the manifestation of the underlying geometry in the behavior of random processes, mostly percolation and random walk.
The study of the geometry of infinite vertex transitive graphs, and of Cayley graphs in particular, is fairly well developed. One goal of these notes is to point to some random metric spaces modeled by graphs that turn out to be somewhat exotic, that is, they admit a combination of properties not encountered in the vertex transitive world. These include percolation clusters on vertex transitive graphs, critical clusters, local and scaling limits of graphs, long range percolation, CCCP graphs obtained by contracting percolation clusters on graphs, and stationary random graphs, including the uniform infinite planar triangulation (UIPT) and the stochastic hyperbolic planar quadrangulation (SHIQ).

Product details

Authors Itai Benjamini
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 09.09.2013
 
EAN 9783319025759
ISBN 978-3-31-902575-9
No. of pages 129
Dimensions 156 mm x 237 mm x 9 mm
Weight 225 g
Illustrations VII, 129 p. 6 illus., 3 illus. in color.
Series Lecture Notes in Mathematics
École d'Été de Probabilités de Saint-Flour
Lecture Notes in Mathematics / École d'Été de Probabilités de Saint-Flour
Lecture Notes in Mathematics
École d'Été de Probabilités de Saint-Flour
Subject Natural sciences, medicine, IT, technology > Mathematics > Geometry

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.