Fr. 232.00

Semiconducting Silicon Nanowires for Biomedical Applications

English · Hardback

Shipping usually within 1 to 3 weeks (not available at short notice)

Description

Read more

Informationen zum Autor Jeffrey Coffer is Professor of Inorganic and Materials Chemistry at Texas Christian University, Fort Worth. His research interests are in the preparation and properties of semiconductor nanocrystals and nanowires, luminescent silicon-based materials, rare-earth-doped semiconductor nanostructures, and nanophase biomaterials. Klappentext The unique fundamental physico-chemical properties of semiconductor silicon nanowires provide a diverse toolbox from which scientists are tackling significant problems in human health at the nanoscale. Biological systems at both the in vitro and in vivo levels are being investigated as is the fabrication, surface chemistry, and electronic properties of such materials. This book seeks to address the most critical range of issues emerging in this important field and its applications. Part one provides readers with a comprehensive overview of the field and fundamental technologies. Chapters in part two look at tissue engineering and selected drug delivery therapies. The final set of chapters address biomolecular detection and sensing applications of silicon nanowires. Inhaltsverzeichnis Contributor contact details Woodhead Publishing Series in Biomaterials Foreword Part I: Introduction to silicon nanowires for biomedical applications 1. Overview of semiconducting silicon nanowires for biomedical applications Abstract: 1.1 Introduction 1.2 Origins of silicon nanowires 1.3 The structure of this book 1.4 Conclusion 1.5 References 2. Growth and characterization of semiconducting silicon nanowires for biomedical applications Abstract: 2.1 Introduction 2.2 Synthesis methods for silicon nanowires (SiNWs) 2.3 Characterization methods 2.4 Synthesis of semiconductor SiNWs by the chemical vapor deposition (CVD) method 2.5 Conclusion 2.6 Future trends 2.7 Sources of further information and advice 2.8 References 3. Surface modification of semiconducting silicon nanowires for biosensing applications Abstract: 3.1 Introduction 3.2 Methods for fabricating silicon nanowires (SiNWs) 3.3 Chemical activation/passivation of SiNWs 3.4 Modification of native oxide layer 3.5 Modification of hydrogen-terminated silicon nanowires (H-SiNW) 3.6 Site-specific immobilization strategy of biomolecules on SiNWs 3.7 Control of non-specific interactions 3.8 Conclusion References 4. Biocompatibility of semiconducting silicon nanowires Abstract: 4.1 Introduction 4.2 In vitro biocompatibility of silicon nanowires (SiNWs) 4.3 In vivo biocompatibility of SiNWs 4.4 Methodology issues 4.5 Future trends 4.6 Conclusion 4.7 References Part II: Silicon nanowires for tissue engineering and delivery applications 5. Functional semiconducting silicon nanowires for cellular binding and internalization Abstract: 5.1 Motivation: developing a nano-bio model system for rational design in nanomedicine 5.2 Methods: non-linear optical characterization and surface functionalization of silicon nanowires (SiNWs) 5.3 Applications: in vivo imaging and in vitro cellular interaction of functional SiNWs 5.4 Conclusions and future trends 5.5 References 6. Functional semiconducting silicon nanowires and their composites as orthopedic tissue scaffolds Abstract: 6.1 Introduction 6.2 Nanowire surface etching processes to induce biomineralization 6.3 Nanowire surface functionalization strategies to induce biomineralization 6.4 Construction of silicon nanowire (SiNW)-polymer scaffolds: mimicking trabecular bone 6.5 The role of SiNW orientation in cellular attachment, proliferation and differentiation in the ...

List of contents

Contributor contact details
Woodhead Publishing Series in Biomaterials
Foreword
Part I: Introduction to silicon nanowires for biomedical applications
1. Overview of semiconducting silicon nanowires for biomedical applications
Abstract:
1.1 Introduction
1.2 Origins of silicon nanowires
1.3 The structure of this book
1.4 Conclusion
1.5 References
2. Growth and characterization of semiconducting silicon nanowires for biomedical applications
Abstract:
2.1 Introduction
2.2 Synthesis methods for silicon nanowires (SiNWs)
2.3 Characterization methods
2.4 Synthesis of semiconductor SiNWs by the chemical vapor deposition (CVD) method
2.5 Conclusion
2.6 Future trends
2.7 Sources of further information and advice
2.8 References
3. Surface modification of semiconducting silicon nanowires for biosensing applications
Abstract:
3.1 Introduction
3.2 Methods for fabricating silicon nanowires (SiNWs)
3.3 Chemical activation/passivation of SiNWs
3.4 Modification of native oxide layer
3.5 Modification of hydrogen-terminated silicon nanowires (H-SiNW)
3.6 Site-specific immobilization strategy of biomolecules on SiNWs
3.7 Control of non-specific interactions
3.8 Conclusion
References
4. Biocompatibility of semiconducting silicon nanowires
Abstract:
4.1 Introduction
4.2 In vitro biocompatibility of silicon nanowires (SiNWs)
4.3 In vivo biocompatibility of SiNWs
4.4 Methodology issues
4.5 Future trends
4.6 Conclusion
4.7 References
Part II: Silicon nanowires for tissue engineering and delivery applications
5. Functional semiconducting silicon nanowires for cellular binding and internalization
Abstract:
5.1 Motivation: developing a nano-bio model system for rational design in nanomedicine
5.2 Methods: non-linear optical characterization and surface functionalization of silicon nanowires (SiNWs)
5.3 Applications: in vivo imaging and in vitro cellular interaction of functional SiNWs
5.4 Conclusions and future trends
5.5 References
6. Functional semiconducting silicon nanowires and their composites as orthopedic tissue scaffolds
Abstract:
6.1 Introduction
6.2 Nanowire surface etching processes to induce biomineralization
6.3 Nanowire surface functionalization strategies to induce biomineralization
6.4 Construction of silicon nanowire (SiNW)-polymer scaffolds: mimicking trabecular bone
6.5 The role of SiNW orientation in cellular attachment, proliferation and differentiation in the nanocomposite
6.6 Conclusions and future trends
6.7 Acknowledgement
6.8 References
7. Mediated differentiation of stem cells by engineered semiconducting silicon nanowires
Abstract:
7.1 Introduction
7.2 Methods for fabricating silicon nanowires (SiNWs)
7.3 Regulated differentiation for human mesenchymal stem cells (hMSCs)
7.4 SiNWs fabricated by the electroless metal deposition (EMD) method and their controllable spring constants
7.5 Mediated differentiation of stem cells by engineered SiNWs
7.6 Conclusion
7.7 Future trends
7.8 Acknowledgements
7.9 References
8. Silicon nanoneedles for drug delivery
Abstract:
8.1 Introduction
8.2 Strategies for nanoneedle fabrication
8.3 Drug loading of nanoneedles and release patterns
8.4 Drug delivery using nanoneedles
8.5 Toxicity of nanoneedles
8.6 Overview of nanoneedle applications
8.7 Conclusion
8.8 References
Part III: Silicon nanowires for detection and sensing
9. Semiconducting silicon nanowire array fabrication for high throughput screening in the biosciences
Abstract:
9.1 Introduction
9.2 Fabrication of silicon nanowire (SiNW) field effect transistor (FET) arrays for high throughput screening (HTS) in the biosciences
9.3 Surface modification of SiNW FETs for HTS in the biosciences
9.4 Integration of SiNW FETs with microfluidic devices for HTS in real-time measurements
9.5 Examples/applications of SiNW FETs
9.6 Conclusion
9.7 Future trends
9.8 References
10. Neural cell pinning on surfaces by semiconducting silicon nanowire arrays
Abstract:
10.1 Introduction
10.2 Toward control of neuronal topography and axo-dendritic polarity
10.3 Neuron networks on top of silicon nanowires (SiNWs)
10.4 Future trends
10.5 Conclusion
10.6 References
10.7 Appendix: experimental section
11. Semiconducting silicon nanowires and nanowire composites for biosensing and therapy
Abstract:
11.1 Introduction
11.2 Fabrication of silicon nanowires (SiNWs) and two-dimensional SiNW architectures
11.3 SiNWs for biosensing applications
11.4 Fabrication of SiNW-polymer composite systems
11.5 Biomedical applications of SiNW-polymer composites
11.6 Conclusions and future trends
11.7 References
12. Probe-free semiconducting silicon nanowire platforms for biosensing
Abstract:
12.1 Introduction
12.2 Silicon nanowire (SiNW) biosensors
12.3 Probe layers
12.4 Integrated sample delivery
12.5 Electrical biasing and signal measurement
12.6 Examples/applications of SiNW biosensor platforms
12.7 Conclusions
12.8 Future trends
12.9 References
Index

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.