Fr. 69.00

Refined Iterative Methods for Computation of the Solution and the Eigenvalues of Self-Adjoint Boundary Value Problems

English · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more










I: The Self-Adjoint Boundary Value Problem.- 1. Problems of Dirichlet¿s and Poisson¿s type.- 2. Better approximations.- 3. Energy on the boundary.- 4. Eigenvalue problems.- 5. Biharmonic problems.- 6. Adaption for practical purposes; the test example.- 7. Modes of oscillation of the plate.- II: Theory of Gradient Methods.- 1. Introduction.- 2. The residual polynomial.- 3. Methods with two-term recursive formulae.- 4. Methods with three-term recursive formulae.- 5. Combined methods.- 6. The cgT-method.- 7. Determination of eigenvalues.- III: Experiments on Gradient Methods.- 1. Introduction.- 2. Survey of the plate experiments.- 3. Solution of the system A x + b = 0 (Plate problem with coarse grid).- 3.1 Steepest descent.- 3.2 Tchebycheff method.- 3.3 Conjugate gradient methods.- 3.4 The cgT-method.- 3.5 Combined method.- 3.6 Elimination.- 3.7 Computation of the residuals.- 4. Determination of the eigenvalues of A.- 4.1 Conjugate gradient methods with subsequent QD-algorithm.- 4.2 cgT-method with subsequent QD-algorithm (spectral transformation).- 5. Solution of the system A x + b =0 and determination of the eigenvalues of A; fine grid.- 6. Second test example: the bar problem.- 7. Appendix: The first three eigenvectors of A.- IV: Overrelaxation.- 1. Theory.- 1.1 Principles.- 1.2 General relaxation.- 1.3 Overrelaxation.- 1.4 ¿Property A¿.- 1.5 Young¿s overrelaxation.- 1.6 Different methods.- 2. Numerical results (Plate problem).- 2.1 Overrelaxation.- 2.2 Symmetric relaxation.- 2.3 Block relaxation.- 3. The bar problem.- 3.1 Overrelaxation.- 3.2. Block relaxation.- 3.3 Symmetric overrelaxation.- V: Conclusions.- 1. The plate problem.- 2. The bar problem.- 3. Computation of eigenvalues.- 4. Recollection of the facts.- References.

List of contents

I: The Self-Adjoint Boundary Value Problem.- 1. Problems of Dirichlet's and Poisson's type.- 2. Better approximations.- 3. Energy on the boundary.- 4. Eigenvalue problems.- 5. Biharmonic problems.- 6. Adaption for practical purposes; the test example.- 7. Modes of oscillation of the plate.- II: Theory of Gradient Methods.- 1. Introduction.- 2. The residual polynomial.- 3. Methods with two-term recursive formulae.- 4. Methods with three-term recursive formulae.- 5. Combined methods.- 6. The cgT-method.- 7. Determination of eigenvalues.- III: Experiments on Gradient Methods.- 1. Introduction.- 2. Survey of the plate experiments.- 3. Solution of the system A x + b = 0 (Plate problem with coarse grid).- 4. Determination of the eigenvalues of A.- 5. Solution of the system A x + b =0 and determination of the eigenvalues of A; fine grid.- 6. Second test example: the bar problem.- 7. Appendix: The first three eigenvectors of A.- IV: Overrelaxation.- 1. Theory.- 2. Numerical results (Plate problem).- 3. The bar problem.- V: Conclusions.- 1. The plate problem.- 2. The bar problem.- 3. Computation of eigenvalues.- 4. Recollection of the facts.- References.

Product details

Authors engel, ENGELI, Engeli, Ginsbur, GINSBURG, Ginsburg, Rutishauser, STIEFEL, Stiefel, STIEFEL et al
Publisher Springer, Basel
 
Languages English
Product format Paperback / Softback
Released 26.07.2013
 
EAN 9783034872263
ISBN 978-3-0-3487226-3
No. of pages 107
Dimensions 152 mm x 6 mm x 229 mm
Weight 171 g
Illustrations 107 p. 7 illus.
Series Mitteilungen aus dem Institut für Angewandte Mathematik
Mitteilungen aus dem Institut für Angewandte Mathematik
Subjects Humanities, art, music > Humanities (general)
Natural sciences, medicine, IT, technology > Natural sciences (general)
Social sciences, law, business > Social sciences (general)

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.