Fr. 188.00

Finite Fields - Normal Bases and Completely Free Elements

English · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

Finite Fields are fundamental structures of Discrete Mathematics. They serve as basic data structures in pure disciplines like Finite Geometries and Combinatorics, and also have aroused much interest in applied disciplines like Coding Theory and Cryptography. A look at the topics of the proceed ings volume of the Third International Conference on Finite Fields and Their Applications (Glasgow, 1995) (see [18]), or at the list of references in I. E. Shparlinski's book [47] (a recent extensive survey on the Theory of Finite Fields with particular emphasis on computational aspects), shows that the area of Finite Fields goes through a tremendous development. The central topic of the present text is the famous Normal Basis Theo rem, a classical result from field theory, stating that in every finite dimen sional Galois extension E over F there exists an element w whose conjugates under the Galois group of E over F form an F-basis of E (i. e. , a normal basis of E over F; w is called free in E over F). For finite fields, the Nor mal Basis Theorem has first been proved by K. Hensel [19] in 1888. Since normal bases in finite fields in the last two decades have been proved to be very useful for doing arithmetic computations, at present, the algorithmic and explicit construction of (particular) such bases has become one of the major research topics in Finite Field Theory.

List of contents

I. Introduction and Outline.- 1. The Normal Basis Theorem.- 2. A Strengthening of the Normal Basis Theorem.- 3. Preliminaries on Finite Fields.- 4. A Reduction Theorem.- 5. Particular Extensions of Prime Power Degree.- 6. An Outline.- II. Module Structures in Finite Fields.- 7. On Modules over Principal Ideal Domains.- 8. Cyclic Galois Extensions.- 9. Algorithms for Determining Free Elements.- 10. Cyclotomic Polynomials.- III. Simultaneous Module Structures.- 11. Subgroups Respecting Various Module Structures.- 12. Decompositions Respecting Various Module Structures.- 13. Extensions of Prime Power Degree (1).- IV. The Existence of Completely Free Elements.- 14. The Two-Field-Problem.- 15. Admissability.- 16. Extendability.- 17. Extensions of Prime Power Degree (2).- V. A Decomposition Theory.- 18. Suitable Polynomials.- 19. Decompositions of Completely Free Elements.- 20. Regular Extensions.- 21. Enumeration.- VI. Explicit Constructions.- 22. Strongly Regular Extensions.- 23. Exceptional Cases.- 24. Constructions in Regular Extensions.- 25. Product Constructions.- 26. Iterative Constructions.- 27. Polynomial Constructions.- References.- List of Symbols.

Product details

Authors Dirk Hachenberger
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 02.08.2013
 
EAN 9781461378778
ISBN 978-1-4613-7877-8
No. of pages 171
Dimensions 155 mm x 10 mm x 235 mm
Weight 296 g
Illustrations XII, 171 p.
Series The Springer International Series in Engineering and Computer Science
The Springer International Series in Engineering and Computer Science
Subject Natural sciences, medicine, IT, technology > IT, data processing > IT

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.