Fr. 58.50

Differentialrechnung für Funktionen mit mehreren Variablen

German · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

Das vorliegende Buch, als Lehrbuch neben einem Mathematik-Grundkurs für Ingenieurstudenten gedacht und angelegt, nimmt in der Reihe "Mathematik für Ingenieure und Naturwissenschaitier" eine zentrale Stellung ein. Einerseits wird beim Leser die Kenntnis der Differentialrechnung für Funktionen von einer reel len Variablen vorausgesetzt, und andererseits werden wichtige, im Studienablauf an späterer Stelle liegende Gebiete wie die gewöhnlichen und die partiellen Dif ferentialgleichungen, die Integralrechnung für Funktionen mehrerer Variabler, die Tensoranalysis und alle Gebiete der Optimierung unmittelbar vorbereitet. Durch seinen Charakter als Grundlagenwerk ist es auch für Studenten des Lehr amts an Realschulen und Gymnasien besonders geeignet. Der vorliegende Text ist aus den früheren Auflagen durch eine wesentliche Neubearbeitung hervorgegangen. Dabei wurde die Vertiefung der mathemati schen Allgemeinbildung als wichtiges Anliegen beibehalten, zugleich aber noch stärker auf ingenieurwissenschaitliche Anwendungen orientiert. Unter anderem wird eingegangen auf singuläre Punkte von Nivea.ulinien, das Newton-Verfahren zur numerischen Lösung nichtlinearer Gleichungssysteme sowie auf orthogonale krummlinige Koordinaten und ihre Anwendung auf strömungsmechanische Pro bleme. Die Verfasser danken Frau M. Ga.ede herzlich für die mit großer Sorgfalt vor genommene Übertragung des Manuskripts in eine reproduktionsreife Druckvor lage. Dem Verlag sei für die gute Zusammenarbeit aufrichtig gedankt.

List of contents

1 Elemente der Theorie der Punktmengen.- 1.1 Der Euklidische Raum ?n.- 1.2 Mengen in ?n.- 1.3 Konvergenz in ?n.- 2 Funktionen mehrerer unabhängiger Variabler.- 2.1 Der Begriff der reellen Funktion mehrerer unabhängiger Variabler.- 2.2 Der Begriff der Vektorfunktion mehrerer unabhängiger Variabler.- 2.3 Krummlinige Koordinaten in ?2.- 2.4 Krummlinige Koordinaten in ?3.- 2.5 Grenzwerte von Funktionen mehrerer unabhängiger Variabler.- 2.6 Stetigkeit von Funktionen mehrerer unabhängiger Variabler.- 2.7 Eigenschaften stetiger Funktionen.- 2.8 Parameterdarstellung von Kurven und Flächen.- 3 Ableitungen.- 3.1 Partielle Ableitungen.- 3.2 Totale Differenzierbarkeit reeller Funktionen.- 3.3 Anwendungen des totalen Differentials in der Fehlerrechnung.- 3.4 Differentiale höherer Ordnung.- 3.5 Totale Differenzierbarkeit von Vektorfunktionen.- 3.6 Die verallgemeinerte Kettenregel.- 3.7 Implizite Funktionen, implizite Differentiation.- 3.8 Die Funktionaldeterminante eines Funktionensystems.- 4 Der Satz von Taylor und Extremwertaufgaben.- 4.1 Die Taylorformel für Funktionen zweier Variabler.- 4.2 Extremwertaufgaben.- 4.3 Die Methode der kleinsten Quadrate.- 4.4 Das Newton-Verfahren zur Lösung nichtlinearer Gleichungssysteme.- 5 Skalare Felder und Vektorfelder.- 5.1 Allgemeine Betrachtungen zum Feldbegriff.- 5.2 Die Differentialoperatoren der Vektoranalysis.- Lösungen der Aufgaben.- Literatur.

Product details

Authors Kl Harbarth, Klaus Harbarth, Thoma Riedrich, Thomas Riedrich, Winfrie Schirotzek, Winfried Schirotzek
Publisher Vieweg+Teubner
 
Languages German
Product format Paperback / Softback
Released 01.01.1993
 
EAN 9783815420416
ISBN 978-3-8154-2041-6
No. of pages 198
Weight 310 g
Illustrations 198 S. 3 Abb.
Series Mathematik für Ingenieure und Naturwissenschaftler
Mathematik für Ingenieure und Naturwissenschaftler, Ökonomen und Landwirte
Mathematik für Ingenieure und Naturwissenschaftler
Subject Natural sciences, medicine, IT, technology > Technology > Miscellaneous

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.