Read more 
This text takes a practical approach to multivariate data analysis, with an introduction to the most commonly encountered statistical and multivariate techniques. Using Multivariate Statistics provides practical guidelines for conducting numerous types of multivariate statistical analyses. It gives syntax and output for accomplishing many analyses through the most recent releases of SAS and SPSS. The book maintains its practical approach, still focusing on the benefits and limitations of applications of a technique to a data set when, why, and how to do it. Overall, it provides advanced students with a timely and comprehensive introduction to today's most commonly encountered statistical and multivariate techniques, while assuming only a limited knowledge of higher-level mathematics.
List of contents
In this Section:
1. Brief Table of Contents
2. Full Table of Contents
 
1. BRIEF TABLE OF CONTENTS
 
Chapter 1 Introduction
Chapter 2 A Guide to Statistical Techniques: Using the Book
Chapter 3 Review of Univariate and Bivariate Statistics
Chapter 4 Cleaning Up Your Act: Screening Data Prior to Analysis
Chapter 5 Multiple Regression
Chapter 6 Analysis of Covariance
Chapter 7 Multivariate Analysis of Variance and Covariance
Chapter 8 Profile Analysis: The Multivariate Approach to Repeated Measures
Chapter 9 Discriminant Analysis
Chapter 10  Logistic Regression
Chapter 11  Survival/Failure Analysis
Chapter 12  Canonical Correlation
Chapter 13  Principal Components and Factor Analysis
Chapter 14  Structural Equation Modeling
Chapter 15  Multilevel Linear Modeling
Chapter 16  Multiway Frequency Analysis
2. FULL TABLE OF CONTENTS
 
Chapter 1: Introduction
Multivariate Statistics: Why?
Some Useful Definitions
Linear Combinations of Variables
Number and Nature of Variables to Include
Statistical Power
Data Appropriate for Multivariate Statistics
Organization of the Book
 
Chapter 2: A Guide to Statistical Techniques: Using the Book
Research Questions and Associated Techniques
Some Further Comparisons
A Decision Tree
Technique Chapters
Preliminary Check of the Data
 
Chapter 3: Review of Univariate and Bivariate Statistics
Hypothesis Testing
Analysis of Variance
Parameter Estimation
Effect Size
Bivariate Statistics: Correlation and Regression.
Chi-Square Analysis
 
Chapter 4: Cleaning Up Your Act: Screening Data Prior to Analysis
Important Issues in Data Screening
Complete Examples of Data Screening
 
Chapter 5: Multiple Regression
General Purpose and Description
Kinds of Research Questions
Limitations to Regression Analyses
Fundamental Equations for Multiple Regression
Major Types of Multiple Regression
Some Important Issues.
Complete Examples of Regression Analysis
Comparison of Programs
 
Chapter 6: Analysis of Covariance
General Purpose and Description
Kinds of Research Questions
Limitations to Analysis of Covariance
Fundamental Equations for Analysis of Covariance
Some Important Issues
Complete Example of Analysis of Covariance
Comparison of Programs
 
Chapter 7: Multivariate Analysis of Variance and Covariance
General Purpose and Description
Kinds of Research Questions
Limitations to Multivariate Analysis of Variance and Covariance
Fundamental Equations for Multivariate Analysis of Variance and Covariance
Some Important Issues
Complete Examples of Multivariate Analysis of Variance and Covariance
Comparison of Programs
 
Chapter 8: Profile Analysis: The Multivariate Approach to Repeated Measures
General Purpose and Description
Kinds of Research Questions
Limitations to Profile Analysis
Fundamental Equations for Profile Analysis
Some Important Issues
Complete Examples of Profile Analysis
Comparison of Programs
 
Chapter 9: Discriminant Analysis
General Purpose and Description
Kinds of Research Questions
Limitations to Discriminant Analysis
Fundamental Equations for Discriminant Analysis
Types of Discriminant Analysis
Some Important Issues
Comparison of Programs
 
Chapter 10: Logistic Regres
About the author
Barbara Tabachnick is Professor Emerita of Psychology at California State University, Northridge, and co-author with Linda Fidell of 
Using Multivariate Statistics and 
Experimental Designs Using ANOVA. She has published over 70 articles and technical reports and participated in over 50 professional presentations, many invited. She currently presents workshops in computer applications in univariate and multivariate data analysis and consults in a variety of research areas, including professional ethics in and beyond academia, effects of such factors as age and substances on driving and performance, educational computer games, effects of noise on annoyance and sleep, and fetal alcohol syndrome. She is the recipient of the 2012 Western Psychological Association Lifetime Achievement Award.
Summary
-- 
A Practical Approach to using Multivariate Analyses
Using Multivariate Statistics, 6th edition provides advanced undergraduate as well as graduate students with a timely and comprehensive introduction to today's most commonly encountered statistical and multivariate techniques, while assuming only a limited knowledge of higher-level mathematics. This text’s practical approach focuses on the benefits and limitations of applications of a technique to a data set – when, why, and how to do it.
Learning Goals
Upon completing this book, readers should be able to:
 
- Learn to conduct numerous types of multivariate statistical analyses
- Find the best technique to use
- Understand Limitations to applications
- Learn how to use SPSS and SAS syntax and output