Fr. 388.00

Multi-scale Quantum Models for Biocatalysis - Modern Techniques and Applications

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

"Multi-scale Quantum Models for Biocatalysis" explores various molecular modelling techniques and their applications in providing an understanding of the detailed mechanisms at play during biocatalysis in enzyme and ribozyme systems. These areas are reviewed by an international team of experts in theoretical, computational chemistry, and biophysics.
This book presents detailed reviews concerning the development of various techniques, including ab initio molecular dynamics, density functional theory, combined QM/MM methods, solvation models, force field methods, and free-energy estimation techniques, as well as successful applications of multi-scale methods in the biocatalysis systems including several protein enzymes and ribozymes.
This book is an excellent source of information for research professionals involved in computational chemistry and physics, material science, nanotechnology, rational drug design and molecular biology and for students exposed to these research areas.

List of contents

Overview of Methodologies.- Mixed Quantum-Classical Calculations in Biological Systems.- The Oniom Method and its Applications to Enzymatic Reactions.- Comparison Of Reaction Barriers In Energy And Free Energy For Enzyme Catalysis.- Quantum Mechanical Methods for Biomolecular Simulations.- Fast Quantum Models with Empirical Treatments.- Towards an Accurate Semi-Empirical Molecular Orbital Treatment of Covalent and Non-Covalent Biological Interactions.- Design Of Next Generation Force Fields From AB Initio Computations: Beyond Point Charges Electrostatics.- "Multi-Scale" QM/MM Methods with Self-Consistent-Charge Density-Functional-Tight-Binding (SCC-DFTB).- Coarse-Grained Intermolecular Potentials Derived From The Effective Fragment Potential: Application To Water, Benzene, And Carbon Tetrachloride.- Formalisms for the Explicit Inclusion of Electronic Polarizability in Molecular Modeling and Dynamics Studies.- Biocatalysis Applications.- Modeling Protonation Equilibria In Biological Macromolecules.- Quantum Mechanical Studies of the Photophysics of DNA and RNA Bases.- Ab Initio Quantum Mechanical/Molecular Mechanical Studies of Histone Modifying Enzymes.- Interpreting The Observed Substrate Selectivity And The Product Regioselectivity In Orf2-Catalyzed Prenylation From X-Ray Structures.- Unraveling the Mechanisms of Ribozyme Catalysis with Multiscale Simulations.

Summary

“Multi-scale Quantum Models for Biocatalysis” explores various molecular modelling techniques and their applications in providing an understanding of the detailed mechanisms at play during biocatalysis in enzyme and ribozyme systems. These areas are reviewed by an international team of experts in theoretical, computational chemistry, and biophysics.

This book presents detailed reviews concerning the development of various techniques, including ab initio molecular dynamics, density functional theory, combined QM/MM methods, solvation models, force field methods, and free-energy estimation techniques, as well as successful applications of multi-scale methods in the biocatalysis systems including several protein enzymes and ribozymes.

This book is an excellent source of information for research professionals involved in computational chemistry and physics, material science, nanotechnology, rational drug design and molecular biology and for students exposed to these research areas.

Product details

Assisted by LEE (Editor), Lee (Editor), Tai-Sung Lee (Editor), Darri M York (Editor), Darrin M York (Editor), Darrin M. York (Editor)
Publisher Springer Netherlands
 
Languages English
Product format Paperback / Softback
Released 15.06.2011
 
EAN 9789048182275
ISBN 978-90-481-8227-5
No. of pages 420
Weight 652 g
Illustrations XIV, 420 p.
Series Challenges and Advances in Computational Chemistry and Physics
Challenges and Advances in Computational Chemistry and Physics
Subjects Natural sciences, medicine, IT, technology > Chemistry > Theoretical chemistry

B, Catalysis, Chemistry and Materials Science, Nanotechnology, Materials science, Materials Science, general, Theoretical and Computational Chemistry, Chemistry, Physical and theoretical, Theoretical Chemistry

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.