Read more
Difference algebra grew out of the study of algebraic difference equations with coefficients from functional fields. The first stage of this development of the theory is associated with its founder, J.F. Ritt (1893-1951), and R. Cohn, whose book Difference Algebra (1965) remained the only fundamental monograph on the subject for many years. Nowadays, difference algebra has overgrown the frame of the theory of ordinary algebraic difference equations and appears as a rich theory with applications to the study of equations in finite differences, functional equations, differential equations with delay, algebraic structures with operators, group and semigroup rings.
The monograph is intended for graduate students and researchers in difference and differential algebra, commutative algebra, ring theory, and algebraic geometry. The book is self-contained; it requires no prerequisites other than the knowledge of basic algebraic concepts and a mathematical maturity of an advanced undergraduate.
List of contents
Preliminaries.- Basic Concepts of Difference Algebra.- Difference Modules.- Difference Field Extensions.- Compatibility, Replicability, and Monadicity.- Difference Kernels over Partial Difference Fields. Difference Valuation Rings.- Systems of Algebraic Difference Equations.- Elements of the Difference Galois Theory.
Summary
Difference algebra grew out of the study of algebraic difference equations with coefficients from functional fields. The first stage of this development of the theory is associated with its founder, J.F. Ritt (1893-1951), and R. Cohn, whose book Difference Algebra (1965) remained the only fundamental monograph on the subject for many years. Nowadays, difference algebra has overgrown the frame of the theory of ordinary algebraic difference equations and appears as a rich theory with applications to the study of equations in finite differences, functional equations, differential equations with delay, algebraic structures with operators, group and semigroup rings.
The monograph is intended for graduate students and researchers in difference and differential algebra, commutative algebra, ring theory, and algebraic geometry. The book is self-contained; it requires no prerequisites other than the knowledge of basic algebraic concepts and a mathematical maturity of an advanced undergraduate.
Additional text
From the reviews:
“Levin’s Difference Algebra [40] is a milestone in the subject. It is an ever so fundamental and detailed work, in which one does not require the ordinary case of one selected automorphism…an excellent source of numerous results and techniques” (Bulletin of the London Mathematical Society, April 16, 2011)
“This book gives a systematic study of both ordinary and partial difference algebraic structures and their applications. … The book will long become a good reference for researchers in the area of difference algebra and algebraic structures with operators.” (Hirokazu Nishimura, Zentralblatt MATH, Vol. 1209, 2011)
Report
From the reviews:
"Levin's Difference Algebra [40] is a milestone in the subject. It is an ever so fundamental and detailed work, in which one does not require the ordinary case of one selected automorphism...an excellent source of numerous results and techniques" (Bulletin of the London Mathematical Society, April 16, 2011)
"This book gives a systematic study of both ordinary and partial difference algebraic structures and their applications. ... The book will long become a good reference for researchers in the area of difference algebra and algebraic structures with operators." (Hirokazu Nishimura, Zentralblatt MATH, Vol. 1209, 2011)