Share
Fr. 320.00
Matthieu Baudelet, Matthieu (EDT) Baudelet, Matthieu (University of Central Florida Baudelet, Matthieu Baudelet, Matthieu (University of Central Florida Baudelet, Baudelet Matthieu
Laser Spectroscopy for Sensing - Fundamentals, Techniques and Applications
English · Hardback
Shipping usually within 1 to 3 weeks (not available at short notice)
Description
Informationen zum Autor Dr. Baudelet is currently the Senior Research Scientist for the Townes Laser Institute at the University of Central Florida (Orlando, FL). His panel covers the fundamentals of laser-induced plasmas, the application of laser spectroscopies such as LIBS, Fluorescence, Raman, FTIR, as fundamental diagnostics as well as sensing techniques for defense, industrial, environmental, biomedical applications and the study of propagation of ultrashort laser pulses for sensing purposes at distances up to the kilometer range. As Assistant Professor of Chemistry in the National Center for Forensic Science at the University of Central Florida, his research focuses on the application of laser-based spectroscopy for forensic analysis: atomic spectroscopy with laser ablation techniques (LIBS and LA-ICP-MS) as well as molecular with Raman spectroscopy. A large part of his research focuses also on the quantification of interferences in spectroscopic signals. Klappentext Laser spectroscopy has become a diverse field, with applications in numerous areas of physics, chemistry, and biology. Developments in ultrafast laser technology have led to improvements in the sensitivity of laser spectroscopy techniques. Laser spectroscopy can be used to sense solids, liquids and gases for medical diagnostics, environmental monitoring and forensic investigations, and it is critical to the understanding of many industrial and biological processes. Part one covers fundamentals of laser spectroscopy, while part two describes the techniques of laser spectroscopy and part three discusses the applications of laser spectroscopy, such as the detection of chemical, biological and explosive threats. Zusammenfassung Part one covers fundamentals and techniques of laser spectroscopy! while part two describes data analysis and applications of laser spectroscopy such as the sensing of chemical! biological! radiological! nuclear! and explosive (CBRNE) threats. Inhaltsverzeichnis Contributor contact details Woodhead Publishing Series in Electronic and Optical Materials Introduction Dedication Part I: Fundamentals of laser spectroscopy for sensing 1. Fundamentals of optical spectroscopy Abstract: 1.1 Introduction 1.2 Radiative processes and spectral broadening mechanisms 1.3 Atomic spectroscopy 1.4 Molecular spectroscopy 1.5 Conclusion 1.6 Acknowledgments 1.7 References 2. Lasers used for spectroscopy: fundamentals of spectral and temporal control Abstract: 2.1 Introduction 2.2 Laser basics 2.3 Emission linewidth and emission cross-section 2.4 Cavity conditions 2.5 Spectral and temporal control 2.6 References 3. Fundamentals of spectral detection Abstract: 3.1 Introduction 3.2 Selectivity requirements for sensing applications 3.3 Approaches to improve sensitivity 3.4 System stability and signal averaging 3.5 Conclusion 3.6 References 4. Using databases for data analysis in laser spectroscopy Abstract: 4.1 Introduction 4.2 Definition of a database 4.3 Atomic spectroscopy databases on the Internet 4.4 Building your own database 4.5 Putting your database online 4.6 Conclusion 4.7 Disclaimer 4.8 References 5. Multivariate analysis, chemometrics, and machine learning in laser spectroscopy Abstract: 5.1 Introduction 5.2 Preliminary notes: terminology and use of data 5.3 Feature extraction and data pre-processing 5.4 Data analysis and algorithm development: extracting information from data 5.5 Performance evaluation 5.6 Conclusion 5.7 Future trends 5.8 Sources of further information and advice 5.9 Acknowledgments 5.10 References Part II: Laser spect...
List of contents
Contributor contact details
Woodhead Publishing Series in Electronic and Optical Materials
Introduction
Dedication
Part I: Fundamentals of laser spectroscopy for sensing
1. Fundamentals of optical spectroscopy
Abstract:
1.1 Introduction
1.2 Radiative processes and spectral broadening mechanisms
1.3 Atomic spectroscopy
1.4 Molecular spectroscopy
1.5 Conclusion
1.6 Acknowledgments
1.7 References
2. Lasers used for spectroscopy: fundamentals of spectral and temporal control
Abstract:
2.1 Introduction
2.2 Laser basics
2.3 Emission linewidth and emission cross-section
2.4 Cavity conditions
2.5 Spectral and temporal control
2.6 References
3. Fundamentals of spectral detection
Abstract:
3.1 Introduction
3.2 Selectivity requirements for sensing applications
3.3 Approaches to improve sensitivity
3.4 System stability and signal averaging
3.5 Conclusion
3.6 References
4. Using databases for data analysis in laser spectroscopy
Abstract:
4.1 Introduction
4.2 Definition of a database
4.3 Atomic spectroscopy databases on the Internet
4.4 Building your own database
4.5 Putting your database online
4.6 Conclusion
4.7 Disclaimer
4.8 References
5. Multivariate analysis, chemometrics, and machine learning in laser spectroscopy
Abstract:
5.1 Introduction
5.2 Preliminary notes: terminology and use of data
5.3 Feature extraction and data pre-processing
5.4 Data analysis and algorithm development: extracting information from data
5.5 Performance evaluation
5.6 Conclusion
5.7 Future trends
5.8 Sources of further information and advice
5.9 Acknowledgments
5.10 References
Part II: Laser spectroscopy techniques
6. Cavity-based absorption spectroscopy techniques
Abstract:
6.1 Introduction
6.2 Enhancement of sensitivity in absorption spectroscopy
6.3 Gas-phase cavity-ringdown spectroscopy (CRDS) and related methods
6.4 Other forms of gas-phase CRDS and related cavity-based techniques
6.5 Scope of cavity-based spectroscopy: progress and prospects
6.6 Conclusion
6.7 References
7. Photo-acoustic spectroscopy
Abstract:
7.1 Introduction
7.2 Fundamental sensitivity limitations
7 3 General considerations for photo-acoustic spectroscopy (PAS) based sensing
7.4 Practical design of photo-acoustic detectors: gas phase
7.5 Impact of energy transfer processes
7.6 Conclusion
7. 7 References
7.8 Appendix: abbreviations
8. Laser-induced fluorescence spectroscopy (LIF)
Abstract:
8.1 Introduction
8.2 Lasers and coherence
8.3 Spectral resolution
8.4 Temporal resolution
8.5 Laser-induced fluorescence (LIF) imaging and spatial resolution
8.6 LIF sensitivity
8.7 Conclusion and future trends
8.8 Sources of further information and advice
8.9 references
9. Laser-induced phosphorescence spectroscopy: development and application of thermographic phosphors (TP) for thermometry in combustion environments
Abstract:
9.1 Introduction
9.2 Thermometry methods using thermographic phosphors (TP)
9.3 Applications of TP
9.4 Conclusion and future trends
9.5 Acknowledgements
9.6 References
10. Lidar (light detection and ranging)
Abstract:
10.1 Introduction
10.2 Atmospheric spectroscopy and attenuation properties
10.3 Lidar equation and remote sensing sensitivity
10.4 Different lidar types
10.5 Lidar remote sensing examples
10.6 Conclusion and future trends
10.7 References
11. Photothermal spectroscopy
Report
"...very useful knowledge for the researcher who needs to use optical sensing methods in their work. Laser scientists and engineers...will also find this book very informative..." --IEEE Electrical Insulation Magazine,November-December 2014
Product details
Authors | Matthieu Baudelet, Matthieu (EDT) Baudelet, Matthieu (University of Central Florida Baudelet |
Assisted by | Matthieu Baudelet (Editor), Matthieu (University of Central Florida Baudelet (Editor), Baudelet Matthieu (Editor) |
Publisher | ELSEVIER SCIENCE BV |
Languages | English |
Product format | Hardback |
Released | 20.01.2014 |
EAN | 9780857092731 |
ISBN | 978-0-85709-273-1 |
No. of pages | 592 |
Series |
Woodhead Publishing Series in Electronic and Optical Materials Woodhead Publishing Woodhead Publishing Series in Electronic and Optical Materials Woodhead Publishing Electronic |
Subjects |
Natural sciences, medicine, IT, technology
> Technology
> Miscellaneous
TECHNOLOGY & ENGINEERING / Lasers & Photonics, TECHNOLOGY & ENGINEERING / Optics, Laser technology and holography, Laser technology & holography |
Customer reviews
No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.
Write a review
Thumbs up or thumbs down? Write your own review.