Read more
Informationen zum Autor Inna Belfer , MD, PhD, is an Associate Professor of Anesthesiology and Human Genetics and Director of the Molecular Epidemiology of Pain Program at the Department of Anesthesiology, School of Medicine, University of Pittsburgh. Luda Diatchenko , MD, PhD, is a Canada Excellence Research Chair in Human Pain Genetics, Professor, Faculty of Medicine, Department of Anesthesia, and Faculty of Dentistry at McGill University, Alan Edwards Centre for Research on Pain. Klappentext Pain Genetics: Basic to Translational Science is a timely synthesis of the key areas of research informing our understanding of the genetic basis of pain. The book opens with foundational information on basic genetic mechanisms underlying pain perception and progresses recently discovered complex concepts facing the field. The coverage is wide-ranging and will serves as an excellent entry point into understating the genetics of pain as well as providing a single resource for established researchers looking for a better understanding of the diverse strands of research going on in the area.With contributors painstakingly selected to provide a broad range of perspectives and research, Pain Genetics will be a valuable resource for geneticists, neuroscientists, and biomedical professionals alike. Zusammenfassung Pain Genetics: Basic to Translational Science is a timely synthesis of the key areas of research informing our understanding of the genetic basis of pain. The book opens with foundational information on basic genetic mechanisms underlying pain perception and progresses recently discovered complex concepts facing the field. Inhaltsverzeichnis Editors' Biographies xi Contributors xiii 1 How Do Pain Genes Affect Pain Experience? 1 Marshall Devor Introduction 2 Heritability of Pain: Historical Roots 2 Why is Pain Genetics Interesting and Potentially Useful? 4 What Are Pain Genes? 8 How Do Pain Genes Affect Pain Experience? 9 Disease Susceptibility Genes Versus Pain Susceptibility Genes 12 Perspective 13 Acknowledgments 13 2 Conservation of Pain Genes Across Evolution 15 Thang Manh Khuong and G. Greg Neely Introduction 15 Anatomical Organization of Nociception Apparatus in Mammals and Drosophila 16 Acute Heat Pain in Mammals 16 Acute Heat Nociception in Drosophila 18 Mechanical Pain in Mammals 19 Mechanical Nociception in Drosophila 19 Chemical Nociception in Mammals 21 Chemical Nociception in Drosophila 21 Inflammatory Pain in Mammals 22 Persistent Pain in Drosophila 22 Neuropathic Pain in Mammals 25 Structural Reorganizations of Nerve Fibers in Neuropathic Pain 25 Mammalian Neuropathic Pain Genes That Are Conserved in Drosophila 25 Long-Term Potentiation and Long-Term Depression in Neuropathic Pain in Mammals 28 Neuropathic Pain in Drosophila 30 Conclusions 30 3 Defining Human Pain Phenotypes for Genetic Association Studies 37 Christopher Sivert Nielsen Introduction 37 What is a Pain Phenotype? 38 Pain Scaling 39 Heritability 40 Genotype-Phenotype Matching 41 Reliability and Temporal Stability 41 Clinical Phenotypes 43 Designing Clinical Pain Genetic Studies 43 The Heritability of Specific Clinical Pain Conditions 45 Experimental Phenotypes 45 The Heritability of Experimental Phenotypes 46 Extended Phenotypes 47 Practical Concerns 47 Conclusions 48 Conflict of Interest Statement 48 4 Genetic Contributions to Pain and Analgesia: Interactions with Sex and Stress 51 Roger B. Fillingim and Jeffrey S. Mogil Introduction 51 Brief Overview of Sex and Gender Differences in Pain and An...