Fr. 134.00

Topological Microfluidics - Nematic Liquid Crystals and Nematic Colloids in Microfluidic Environment

English · Hardback

Shipping usually within 2 to 3 weeks (title will be printed to order)

Description

Read more

This work represents one of the first comprehensive attempts to seamlessly integrate two highly active interdisciplinary domains in soft matter science - microfluidics and liquid crystals (LCs). Motivated by the lack of fundamental experiments, Dr. Sengupta initiated systematic investigation of LC flows at micro scales, gaining new insights that are also suggestive of novel applications. By tailoring the surface anchoring of the LC molecules and the channel dimensions, different topological constraints were controllably introduced within the microfluidic devices. These topological constraints were further manipulated using a flow field, paving the way for Topological Microfluidics. Harnessing topology on a microfluidic platform, as described in this thesis, opens up capabilities beyond the conventional viscous-dominated microfluidics, promising potential applications in targeted delivery and sorting systems, self-assembled motifs, and novel metamaterial fabrications.

List of contents

Liquid crystal theory.- Materials and experimental methods.- Functionalization of microfluidic devices.- Nematic liquid crystals confined within a microfluidic device: Static case.- Flow of nematic liquid crystals in a microfluidic environment.- Nematic colloids in microfluidic confinement.- Ongoing research.

About the author

Anupam Sengupta is a soft matter physicist at the Max Planck Institute for Dynamics and Self Organization (MPIDS) Göttingen, Germany. Anupam defended his doctoral research on ‘Liquid Crystal Microfluidics’ in December 2012 with the highest distinction (summa cum laude). His current research interests include transport of complex fluids and their dispersions, patterns on soft substrates and wetting of complex fluids. He is a graduate of the Indian Institute of Technology, Bombay, with a Dual Degree in Mechanical Engineering (Bachelor and Master of Technology). He takes great interest in mentoring young minds and loves to travel, write and play Sitar.

Summary

This work represents one of the first comprehensive attempts to seamlessly integrate two highly active interdisciplinary domains in soft matter science – microfluidics and liquid crystals (LCs). Motivated by the lack of fundamental experiments, Dr. Sengupta initiated systematic investigation of LC flows at micro scales, gaining new insights that are also suggestive of novel applications. By tailoring the surface anchoring of the LC molecules and the channel dimensions, different topological constraints were controllably introduced within the microfluidic devices. These topological constraints were further manipulated using a flow field, paving the way for Topological Microfluidics. Harnessing topology on a microfluidic platform, as described in this thesis, opens up capabilities beyond the conventional viscous-dominated microfluidics, promising potential applications in targeted delivery and sorting systems, self-assembled motifs, and novel metamaterial fabrications.

Product details

Authors Anupam Sengupta
Publisher Springer, Berlin
 
Languages English
Product format Hardback
Released 10.05.2013
 
EAN 9783319008578
ISBN 978-3-31-900857-8
No. of pages 153
Dimensions 159 mm x 240 mm x 16 mm
Weight 373 g
Illustrations XVIII, 153 p.
Series Springer Theses
Springer Theses
Subject Natural sciences, medicine, IT, technology > Physics, astronomy > Atomic physics, nuclear physics

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.