Fr. 96.00

Galois Theory, Coverings, and Riemann Surfaces

English · Hardback

Shipping usually within 2 to 3 weeks (title will be printed to order)

Description

Read more

The first part of this book provides an elementary and self-contained exposition of classical Galois theory and its applications to questions of solvability of algebraic equations in explicit form. The second part describes a surprising analogy between the fundamental theorem of Galois theory and the classification of coverings over a topological space. The third part contains a geometric description of finite algebraic extensions of the field of meromorphic functions on a Riemann surface and provides an introduction to the topological Galois theory developed by the author.
All results are presented in the same elementary and self-contained manner as classical Galois theory, making this book both useful and interesting to readers with a variety of backgrounds in mathematics, from advanced undergraduate students to researchers.

List of contents

Chapter 1 Galois Theory: 1.1 Action of a Solvable Group and Representability by Radicals.- 1.2 Fixed Points under an Action of a Finite Group and Its Subgroups.- 1.3 Field Automorphisms and Relations between Elements in a Field.- 1.4 Action of a k-Solvable Group and Representability by k-Radicals.- 1.5 Galois Equations.- 1.6 Automorphisms Connected with a Galois Equation.- 1.7 The Fundamental Theorem of Galois Theory.- 1.8 A Criterion for Solvability of Equations by Radicals.- 1.9 A Criterion for Solvability of Equations by k-Radicals.- 1.10 Unsolvability of Complicated Equations by Solving Simpler Equations.- 1.11 Finite Fields.- Chapter 2 Coverings: 2.1 Coverings over Topological Spaces.- 2.2 Completion of Finite Coverings over Punctured Riemann Surfaces.- Chapter 3 Ramified Coverings and Galois Theory: 3.1 Finite Ramified Coverings and Algebraic Extensions of Fields of Meromorphic Functions.- 3.2 Geometry of Galois Theory for Extensions of a Field of Meromorphic Functions.- References.- Index

About the author

Askold Khovanskii is a Professor of Mathematics at the University of Toronto, and a principal researcher at the RAS Institute for Systems Analysis (Moscow, Russia). He is a founder of Topological Galois Theory and the author of fundamental results in this area.

Additional text

From the reviews:
“This book features generalizations and variations beyond Abel’s theorem per se. … This book is for those who appreciate concision, and remarkably, the author develops these extended results in full detail--all in a work just a fraction of the length of standard Galois theory textbooks. Summing Up: Recommended. Upper-division undergraduates through researchers/faculty.” (D. V. Feldman, Choice, Vol. 51 (10), June, 2014)

Report

From the reviews:
"This book features generalizations and variations beyond Abel's theorem per se. ... This book is for those who appreciate concision, and remarkably, the author develops these extended results in full detail--all in a work just a fraction of the length of standard Galois theory textbooks. Summing Up: Recommended. Upper-division undergraduates through researchers/faculty." (D. V. Feldman, Choice, Vol. 51 (10), June, 2014)

Product details

Authors Askold Khovanskii
Assisted by Valentina Kiritchenko (Translation), Vladlen Timorin (Translation)
Publisher Springer, Berlin
 
Original title Teoriya Galua, Nakrytiya i Rimanovy Poverkhnosti
Languages English
Product format Hardback
Released 10.05.2013
 
EAN 9783642388408
ISBN 978-3-642-38840-8
No. of pages 81
Dimensions 160 mm x 244 mm x 12 mm
Weight 262 g
Illustrations VIII, 81 p.
Subject Natural sciences, medicine, IT, technology > Mathematics > Arithmetic, algebra

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.