Read more
Aggregation-Induced Emission (AIE) is a novel photophysical phenomenon which offers a new platform APPLICATIONS for researchers to look into the light-emitting processes from luminogen aggregates, from which useful information on structure-property relationships may be collected and mechanistic insights may be gained. The discovery of the AIE effect opens a new avenue for the development of new luminogen materials in the aggregate or solid state. By enabling light emission in the practically useful solid state, AIE has the potential to significantly expand the technological applications of luminescent materials.
Aggregation-Induced Emission: Applications is the first book to explore the high-tech applications
of AIE luminogens, including technological utilizations of AIE materials in the areas of electroluminescence, mechanochromism, chiral recognition, ionic sensing, biomolecule detection, and cell imaging. Potential applications in room temperature phosphorescence, liquid crystals, circularly polarized luminescence, and organic lasing are also introduced in this volume.
Topics covered include:
* AIE materials for electroluminescence applications
* Liquid crystals with AIE characteristics
* Mechanochromic AIE materials
* Chiral recognition and enantiomeric differentiation based on AIE
* AIE and applications of aryl-substituted pyrrole derivatives
* New chemo-/biosensors with AIE-active molecules
* AIE luminogens for in vivo functional bioimaging
* Applications of AIE materials in biotechnology
This book is essential reading for scientists and engineers who are designing optoelectronic materials and biomedical sensors, and will also be of interest to academic researchers in materials science, physical and synthetic organic chemistry as well as physicists and biological chemists.
List of contents
List of Contributors xi
Preface xiii
1 AIE or AIEE Materials for Electroluminescence Applications 1
Chiao-Wen Lin and Chin-Ti Chen
1.1 Introduction 1
1.2 EL Background, EL Efficiency, Color Chromaticity, and Fabrication Issues of OLEDs 2
1.3 AIE or AIEE Silole Derivatives for OLEDs 7
1.4 AIE or AIEE Maleimide and Pyrrole Derivatives for OLEDs 10
1.5 AIE or AIEE Cyano-Substituted Stilbenoid and Distyrylbenzene Derivatives for OLEDs 14
1.6 AIE or AIEE Triarylamine Derivatives for OLEDs 17
1.7 AIE or AIEE Triphenylethene and Tetraphenylethene Derivatives for OLEDs 17
1.8 White OLEDs Containing AIE or AIEE Materials 31
1.9 Perspectives 36
References 37
2 Crystallization-Induced Phosphorescence for Purely Organic Phosphors at Room Temperature and Liquid Crystals with Aggregation-Induced Emission Characteristics 42
Wang Zhang Yuan, Yongming Zhang, and Ben Zhong Tang
2.1 Crystallization-Induced Phosphorescence for Purely Organic Phosphors at Room Temperature 42
2.1.1 Introduction 42
2.1.2 Molecular luminogens with crystallization-induced phosphorescence at room temperature 43
2.2 Liquid crystals with aggregation-induced emission characteristics 51
2.2.1 Luminescent liquid crystals 51
2.2.2 Aggregation-induced emission strategy towards high-efficiency luminescent liquid crystals 52
2.3 Conclusions and Perspectives 56
References 57
3 Mechanochromic Aggregation-Induced Emission Materials 60
Zhenguo Chi and Jiarui Xu
3.1 Introduction 60
3.2 Mechanochromic Non-AIE Compounds 61
3.3 Mechanochromic AIE Compounds 63
3.4 Conclusion 81
References 82
4 Chiral Recognition and Enantiomeric Excess Determination Based on Aggregation-Induced Emission 86
Yan-Song Zheng
4.1 Introduction to Chiral Recognition 86
4.2 Chiral Recognition and Enantiomeric Excess Determination of Chiral Amines 87
4.3 Chiral Recognition and Enantiomeric Excess Determination of Chiral Acids 90
4.3.1 Enantiomeric excess determination of chiral acids using chiral AIE amines 90
4.3.2 Enantiomeric excess determination of chiral acids using a chiral receptor in the presence of an AIE compound 97
4.4 Mechanism of chiral recognition based on AIE 100
4.4.1 Mechanism of chiral recognition by a chiral AIE monoamine 101
4.4.2 Mechanism of chiral recognition by a chiral AIE diamine 101
4.5 Prospects for chiral recognition based on AIE 103
References 104
5 AIE Materials Towards Efficient Circularly Polarized Luminescence, Organic Lasing, and Superamplified Detection of Explosives 106
Jianzhao Liu, Jacky W.Y. Lam, and Ben Zhong Tang
5.1 Introduction 106
5.2 AIE Materials with Efficient Circularly Polarized Luminescence and Large Dissymmetry Factor 106
5.2.1 Aggregation-induced circular dichroism 107
5.2.2 AIE, fluorescence decay dynamics and theoretical understanding 109
5.2.3 Aggregation-induced circularly polarized luminescence 112
5.2.4 Supramolecular assembly and structural modeling 114
5.3 AIE Materials for Organic Lasing 117
5.3.1 Fabrication of nano-structures 117
5.3.2 Lasing performances 118
5.4 AIE Materials for Superamplified Detection of Explosives 120
5.4.1 Hyperbranched polymer-based sensor 121
5.4.2 Mesoporous material-based sensor 126
5.5 Conclusion 126
References 127
6 Aggregation-Induced Emission and Applications of Aryl
About the author
ANJUN QIN, Department of Polymer Science and Engineering, Zhejiang University, China.
BEN ZHONG TANG, Department of Chemistry, The Hong Kong University of Science and Technology, China.
Summary
Edited by the academic who first discovered this important phenomenon, Aggregation-Induced Emission is the first book to cover the applications of Aggregation-Induced Emission. This groundbreaking text explores the high-tech applications of AIE materials in optoelectronic devices, chemical sensors, and biological probes.