Fr. 188.00

Soft Computing for Knowledge Discovery - Introducing Cartesian Granule Features

English · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

Knowledge discovery is an area of computer science that attempts to uncover interesting and useful patterns in data that permit a computer to perform a task autonomously or assist a human in performing a task more efficiently.
Soft Computing for Knowledge Discovery provides a self-contained and systematic exposition of the key theory and algorithms that form the core of knowledge discovery from a soft computing perspective. It focuses on knowledge representation, machine learning, and the key methodologies that make up the fabric of soft computing - fuzzy set theory, fuzzy logic, evolutionary computing, and various theories of probability (e.g. naïve Bayes and Bayesian networks, Dempster-Shafer theory, mass assignment theory, and others). In addition to describing many state-of-the-art soft computing approaches to knowledge discovery, the author introduces Cartesian granule features and their corresponding learning algorithms as an intuitive approach to knowledge discovery. This new approach embraces the synergistic spirit of soft computing and exploits uncertainty in order to achieve tractability, transparency and generalization. Parallels are drawn between this approach and other well known approaches (such as naive Bayes and decision trees) leading to equivalences under certain conditions.
The approaches presented are further illustrated in a battery of both artificial and real-world problems. Knowledge discovery in real-world problems, such as object recognition in outdoor scenes, medical diagnosis and control, is described in detail. These case studies provide further examples of how to apply the presented concepts and algorithms to practical problems.
The author provides web page access to an online bibliography, datasets, source codes for several algorithms described in the book, and other information.
Soft Computing for Knowledge Discovery is for advanced undergraduates,professionals and researchers in computer science, engineering and business information systems who work or have an interest in the dynamic fields of knowledge discovery and soft computing.

List of contents

I.- 1 Knowledge Discovery.- II.- 2 Knowledge Representation.- 3 Fuzzy Set Theory.- 4 Fuzzy Logic.- 5 Probability Theory.- 6 Fril - a Support Logic Programming Environment.- III.- 7 Machine Learning.- IV.- 8 Cartesian Granule Features.- 9 Learning Cartesian Granule Feature Models.- V.- 10 Analysis of Cartesian Granule Feature Models.- 11 Applications.- Appendix: Evolutionary Computation.- Glossary of Main Symbols.

Product details

Authors James G. Shanahan, James G Shanahan, James G. Shanahan
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 13.03.2013
 
EAN 9781461369479
ISBN 978-1-4613-6947-9
No. of pages 326
Dimensions 155 mm x 19 mm x 235 mm
Weight 534 g
Illustrations XXI, 326 p.
Series The Springer International Series in Engineering and Computer Science
The Springer International Series in Engineering and Computer Science
Subject Natural sciences, medicine, IT, technology > IT, data processing > Application software

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.