Fr. 134.00

Commutative Harmonic Analysis I - General Survey. Classical Aspects

English · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

This volume is the first in the series devoted to the commutative harmonic analysis, a fundamental part of the contemporary mathematics. The fundamental nature of this subject, however, has been determined so long ago, that unlike in other volumes of this publication, we have to start with simple notions which have been in constant use in mathematics and physics. Planning the series as a whole, we have assumed that harmonic analysis is based on a small number of axioms, simply and clearly formulated in terms of group theory which illustrate its sources of ideas. However, our subject cannot be completely reduced to those axioms. This part of mathematics is so well developed and has so many different sides to it that no abstract scheme is able to cover its immense concreteness completely. In particular, it relates to an enormous stock of facts accumulated by the classical "trigonometric" harmonic analysis. Moreover, subjected to a general mathematical tendency of integration and diffusion of conventional intersubject borders, harmonic analysis, in its modem form, more and more rests on non-translation invariant constructions. For example, one ofthe most signifi cant achievements of latter decades, which has substantially changed the whole shape of harmonic analysis, is the penetration in this subject of subtle techniques of singular integral operators.

List of contents

I. Methods and Structure of Commutative Harmonic Analysis.- II. Classical Themes of Fourier Analysis.- III. Methods of the Theory of Singular Integrals: Hilbert Transform and Calderón-Zygmund Theory.- Author Index.

Product details

Authors E. M. Dyn'kin
Assisted by K Nikol'skij (Editor), K Nikol'skij (Editor), V. P. Khavin (Editor), V.P. Khavin (Editor), D. Khavinson (Editor), S. V. Kislyakov (Editor), N. K. Nikol'skij (Editor), N.K. Nikol'skij (Editor), P Khavin (Editor), V P Khavin (Editor), D. Khavinson (Translation), S. V. Kislyakov (Translation), S.V. Kislyakov (Translation)
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 12.10.2010
 
EAN 9783642057397
ISBN 978-3-642-05739-7
No. of pages 270
Illustrations X, 270 p.
Series Encyclopaedia of Mathematical Sciences
Encyclopaedia of Mathematical Sciences
Subject Natural sciences, medicine, IT, technology > Mathematics > Analysis

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.