Fr. 135.00

Wave Propagation in Viscoelastic and Poroelastic Continua - A Boundary Element Approach

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

Wave propagation is an important topic in engineering sciences, especially, in the field of solid mechanics. A description of wave propagation phenomena is given by Graff [98]: The effect of a sharply applied, localized disturbance in a medium soon transmits or 'spreads' to other parts of the medium. These effects are familiar to everyone, e.g., transmission of sound in air, the spreading of ripples on a pond of water, or the transmission of radio waves. From all wave types in nature, here, attention is focused only on waves in solids. Thus, solely mechanical disturbances in contrast to electro-magnetic or acoustic disturbances are considered. of waves - the compression wave similar to the In solids, there are two types pressure wave in fluids and, additionally, the shear wave. Due to continual reflec tions at boundaries and propagation of waves in bounded solids after some time a steady state is reached. Depending on the influence of the inertia terms, this state is governed by a static or dynamic equilibrium in frequency domain. However, if the rate of onset of the load is high compared to the time needed to reach this steady state, wave propagation phenomena have to be considered.

List of contents

1. Introduction.- 2. Convolution quadrature method.- 2.1 Basic theory of the convolution quadrature method.- 2.2 Numerical tests.- 3. Viscoelastically supported Euler-Bernoulli beam.- 3.1 Integral equation for a beam resting on viscoelastic foundation.- 3.2 Numerical example.- 4. Time domain boundary element formulation.- 4.1 Integral equation for elastodynamics.- 4.2 Boundary element formulation for elastodynamics.- 4.3 Validation of proposed method: Wave propagation in a rod.- 5. Viscoelastodynamic boundary element formulation.- 5.1 Viscoelastic constitutive equation.- 5.2 Boundary integral equation.- 5.3 Boundary element formulation.- 5.4 Validation of the method and parameter study.- 6. Poroelastodynamic boundary element formulation.- 6.1 Biot's theory of poroelasticity.- 6.2 Fundamental solutions.- 6.3 Poroelastic Boundary Integral Formulation.- 6.4 Numerical studies.- 7. Wave propagation.- 7.1 Wave propagation in poroelastic one-dimensional column.- 7.2 Waves in half space.- 8. Conclusions - Applications.- 8.1 Summary.- 8.2 Outlook on further applications.- A. Mathematic preliminaries.- A.1 Distributions or generalized functions.- A.2 Convolution integrals.- A.3 Laplace transform.- A.4 Linear multistep method.- B. BEM details.- B.1 Fundamental solutions.- B.1.1 Visco- and elastodynamic fundamental solutions.- B.1.2 Poroelastodynamic fundamental solutions.- B.2 "Classical" time domain BE formulation.- Notation Index.- References.

Summary

Wave propagation is an important topic in engineering sciences, especially, in the field of solid mechanics. A description of wave propagation phenomena is given by Graff [98]: The effect of a sharply applied, localized disturbance in a medium soon transmits or 'spreads' to other parts of the medium. These effects are familiar to everyone, e.g., transmission of sound in air, the spreading of ripples on a pond of water, or the transmission of radio waves. From all wave types in nature, here, attention is focused only on waves in solids. Thus, solely mechanical disturbances in contrast to electro-magnetic or acoustic disturbances are considered. of waves - the compression wave similar to the In solids, there are two types pressure wave in fluids and, additionally, the shear wave. Due to continual reflec tions at boundaries and propagation of waves in bounded solids after some time a steady state is reached. Depending on the influence of the inertia terms, this state is governed by a static or dynamic equilibrium in frequency domain. However, if the rate of onset of the load is high compared to the time needed to reach this steady state, wave propagation phenomena have to be considered.

Product details

Authors Martin Schanz
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 11.10.2010
 
EAN 9783642074905
ISBN 978-3-642-07490-5
No. of pages 170
Dimensions 159 mm x 235 mm x 236 mm
Weight 289 g
Illustrations X, 170 p.
Series Lecture Notes in Applied and Computational Mechanics
Lecture Notes in Applied and Computational Mechanics
Subjects Natural sciences, medicine, IT, technology > Technology > Mechanical engineering, production engineering

C, Klassische Mechanik, Vibration, Numerische Mathematik, engineering, Wave, Classical mechanics, Solid Mechanics, Mechanics, Mechanics, Applied, Numerical analysis, Numerical Methods, Solids, soil mechanics, poroelasticity, porous media, vibrations

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.