Fr. 124.00

Life: An Introduction to Complex Systems Biology

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

What is life? What type of system is life? How can we understand life? Or what does "understanding life" really mean? Sixty years since the publication of What Is Life? by Schrodinger ¨ and after the rise and success of molecular biology, have we reached the answer to these questions? In the recent years, I have often been asked by young researchers and students in biology: "I am afraid that such basic questions on a life system itself are not answered by the main-stream approach of c- rent biology that elucidates molecules and genes. We need some alternative approach. WhatamItodo?"Theyaresatis?edneitherwiththecurrenttrend in bioinformatics nor with the detailed computer models, and are striving for a framework complementary to molecular biology, a one that does not rely on enumerative approach. Responding to these voices, I have explained approaches my colleagues and I have been taking both theoretically and experimentally, in lectures and seminars. Although they show much interest, introduction of these rather interdisciplinary style of research is not easy, let alone discussing how we can understand life. Of course they ask for some books that describe a theoretical basis of our approach and the summaries of the recent studies. My desire to answer these requests from the students and researchers was the main force that had driven me to write the present book. On the other hand, those working in nonlinear dynamics and theoretical physicshavestrivedtosetupanoveltheoreticalframeworkthatiscompatible with biological systems.

List of contents

How Should Living Systems Be Studied?.- Constructive Biology.- Basic Concepts in Dynamical Systems and Statistical Physics for Biological System.- Origin of Bioinformation.- Origin of a Cell with Recursive Growth.- Universal Statistics of a Cell with Recursive Growth.- Cell Differentiation and Development.- Irreversible Differentiation from Stem Cell and Robust Development.- Pattern Formation and Origin of Positional Information.- Genetic Evolution with Phenotypic Fluctuations.- Speciation as a Fixation of Phenotypic Differentiation.- Conclusion.

Summary

What is life? What type of system is life? How can we understand life? Or what does “understanding life” really mean? Sixty years since the publication of What Is Life? by Schrodinger ¨ and after the rise and success of molecular biology, have we reached the answer to these questions? In the recent years, I have often been asked by young researchers and students in biology: “I am afraid that such basic questions on a life system itself are not answered by the main-stream approach of c- rent biology that elucidates molecules and genes. We need some alternative approach. WhatamItodo?”Theyaresatis?edneitherwiththecurrenttrend in bioinformatics nor with the detailed computer models, and are striving for a framework complementary to molecular biology, a one that does not rely on enumerative approach. Responding to these voices, I have explained approaches my colleagues and I have been taking both theoretically and experimentally, in lectures and seminars. Although they show much interest, introduction of these rather interdisciplinary style of research is not easy, let alone discussing how we can understand life. Of course they ask for some books that describe a theoretical basis of our approach and the summaries of the recent studies. My desire to answer these requests from the students and researchers was the main force that had driven me to write the present book. On the other hand, those working in nonlinear dynamics and theoretical physicshavestrivedtosetupanoveltheoreticalframeworkthatiscompatible with biological systems.

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.