Fr. 189.00

Rule Extraction from Support Vector Machines

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

Support vector machines (SVMs) are one of the most active research areas in machine learning. SVMs have shown good performance in a number of applications, including text and image classification. However, the learning capability of SVMs comes at a cost - an inherent inability to explain in a comprehensible form, the process by which a learning result was reached. Hence, the situation is similar to neural networks, where the apparent lack of an explanation capability has led to various approaches aiming at extracting symbolic rules from neural networks. For SVMs to gain a wider degree of acceptance in fields such as medical diagnosis and security sensitive areas, it is desirable to offer an explanation capability. User explanation is often a legal requirement, because it is necessary to explain how a decision was reached or why it was made. This book provides an overview of the field and introduces a number of different approaches to extracting rules from support vector machines developed by key researchers. In addition, successful applications are outlined and future research opportunities are discussed. The book is an important reference for researchers and graduate students, and since it provides an introduction to the topic, it will be important in the classroom as well. Because of the significance of both SVMs and user explanation, the book is of relevance to data mining practitioners and data analysts.

List of contents

Rule Extraction from Support Vector Machines: An Introduction.- Rule Extraction from Support Vector Machines: An Overview of Issues and Application in Credit Scoring.- Algorithms and Techniques.- Rule Extraction for Transfer Learning.- Rule Extraction from Linear Support Vector Machines via Mathematical Programming.- Rule Extraction Based on Support and Prototype Vectors.- SVMT-Rule: Association Rule Mining Over SVM Classification Trees.- Prototype Rules from SVM.- Applications.- Prediction of First-Day Returns of Initial Public Offering in the US Stock Market Using Rule Extraction from Support Vector Machines.- Accent in Speech Samples: Support Vector Machines for Classification and Rule Extraction.- Rule Extraction from SVM for Protein Structure Prediction.

Summary

Support vector machines (SVMs) are one of the most active research areas in machine learning. SVMs have shown good performance in a number of applications, including text and image classification. However, the learning capability of SVMs comes at a cost – an inherent inability to explain in a comprehensible form, the process by which a learning result was reached. Hence, the situation is similar to neural networks, where the apparent lack of an explanation capability has led to various approaches aiming at extracting symbolic rules from neural networks. For SVMs to gain a wider degree of acceptance in fields such as medical diagnosis and security sensitive areas, it is desirable to offer an explanation capability. User explanation is often a legal requirement, because it is necessary to explain how a decision was reached or why it was made. This book provides an overview of the field and introduces a number of different approaches to extracting rules from support vector machines developed by key researchers. In addition, successful applications are outlined and future research opportunities are discussed. The book is an important reference for researchers and graduate students, and since it provides an introduction to the topic, it will be important in the classroom as well. Because of the significance of both SVMs and user explanation, the book is of relevance to data mining practitioners and data analysts.

Product details

Assisted by Joachi Diederich (Editor), Joachim Diederich (Editor)
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 12.10.2010
 
EAN 9783642094637
ISBN 978-3-642-09463-7
No. of pages 262
Dimensions 155 mm x 15 mm x 235 mm
Weight 423 g
Illustrations XII, 262 p. 55 illus.
Series Studies in Computational Intelligence
Studies in Computational Intelligence
Subjects Natural sciences, medicine, IT, technology > Technology > General, dictionaries

C, Künstliche Intelligenz, machine learning, Data Mining, Optimization, Artificial Intelligence, Knowledge, Learning, engineering, intelligence, Programming, Mathematical and Computational Engineering, Engineering mathematics, Applied mathematics, Mathematical and Computational Engineering Applications, mathematical programming

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.