Read more
Informationen zum Autor Alex van Herk is Senior researcher at the Institute of Chemical and Engineering Sciences, an A*Star institute in Singapore and part time Professor in Polymer Reaction Engineering at the Eindhoven University of Technology, Netherlands. Klappentext Chemistry and Technology of Emulsion Polymerisation 2e provides a practical and intuitive explanation of emulsion polymerization, in combination with both conventional and controlled radical polymerization. For those working in industry, coupling theory with everyday practice can be difficult. By carefully explaining the principles of the reaction, based on well-designed experimental investigation, the book explains how the principles relate to practical application.The second edition of this book includes a new chapter on morphology of latex particles, a rapidly progressing area where modelling the thermodynamic and kinetic aspects of phase separation and morphology has developed into a mature and powerful tool to predict and control morphology of latex particles.Another area that is rapidly progressing is the application of controlled radical polymerisation in emulsion polymerization. Controlled radical polymerisation is used in aiding encapsulation of inorganic particles like pigment particles and clay platelets. These latest developments are included in the second edition. Zusammenfassung Chemistry and Technology of Emulsion Polymerisation 2e provides a practical and intuitive explanation of emulsion polymerization, in combination with both conventional and controlled radical polymerization. For those working in industry, coupling theory with everyday practice can be difficult. Inhaltsverzeichnis List of Contributors xi Abbreviations xiii List of Frequently Used Symbols xvii Introduction to the Second Edition xix Introduction to the First Edition xxi 1 Historic Overview 1 Finn Knut Hansen 1.1 The Early Stages 1 1.2 The Second Half of the Twentieth Century 9 1.2.1 Product Development 9 1.2.2 Kinetic Theory 11 1.2.3 Emulsion Polymerisation in Monomer Droplets 19 1.2.4 Industrial Process Control and Simulation 21 2 Introduction to Radical (Co)Polymerisation 23 A.M. van Herk 2.1 Mechanism of Free Radical Polymerisation 23 2.2 Rate of Polymerisation and Development of Molecular Mass Distribution 25 2.2.1 Rate of Polymerisation 25 2.2.2 Kinetic Chain Length 26 2.2.3 Chain Length Distribution 27 2.2.4 Temperature and Conversion Effects 30 2.3 Radical Transfer Reactions 31 2.3.1 Radical Transfer Reactions to Low Molecular Mass Species 31 2.3.2 Radical Transfer Reactions to Polymer 32 2.4 Radical Copolymerisation 34 2.4.1 Derivation of the Copolymerisation Equation 34 2.4.2 Types of Copolymers 37 2.4.3 Polymerisation Rates in Copolymerisations 39 2.5 Controlled Radical Polymerisation 41 3 Emulsion Polymerisation 43 A.M. van Herk and R.G. Gilbert 3.1 Introduction 43 3.2 General Aspects of Emulsion Polymerisation 44 3.3 Basic Principles of Emulsion Polymerisation 46 3.4 Particle Nucleation 47 3.5 Particle Growth 51 3.5.1 The Zero-One and Pseudo-Bulk Dichotomy 52 3.5.2 Zero-One Kinetics 53 3.5.3 Pseudo-Bulk Kinetics 55 3.5.4 Systems between Zero-One and Pseudo-Bulk 57 3.6 Ingredients in Recipes 57 3.6.1 Monomers 58 3.6.2 Initiators 58 3.6.3 Surfactants 58 3.6.4 Other Ingredients 59 3.7 Emulsion Copolymerisation 59 3.7.1 Monomer Partitioning in Emulsion Polymerisation 59 3.7.2 Composition Drift in Emulsion Co- and Terpolymerisation 63 3.7.3 Process Strategies in Emulsion Copolymerisation 64 3.8 Particle Morphologies 66 3.8.1 Core-Shell...