Fr. 178.00

Elliptic Curves and Arithmetic Invariants

English · Hardback

Shipping usually within 2 to 3 weeks (title will be printed to order)

Description

Read more

This book contains a detailed account of the result of the author's recent Annals paper and JAMS paper on arithmetic invariant, including mi-invariant, L-invariant, and similar topics. This book can be regarded as an introductory text to the author's previous book p-Adic Automorphic Forms on Shimura Varieties. Written as a down-to-earth introduction to Shimura varieties, this text includes many examples and applications of the theory that provide motivation for the reader. Since it is limited to modular curves and the corresponding Shimura varieties, this book is not only a great resource for experts in the field, but it is also accessible to advanced graduate students studying number theory. Key topics include non-triviality of arithmetic invariants and special values of L-functions; elliptic curves over complex and p-adic fields; Hecke algebras; scheme theory; elliptic and modular curves over rings; and Shimura curves.

List of contents

1 Non-triviality of Arithmetic Invariants .- 2 Elliptic Curves and Modular Forms.- 3 Invariants, Shimura Variety and Hecke Algebra.- 4 Review of Scheme Theory.- 5 Geometry of Variety.- 6 Elliptic and Modular Curves over Rings.- 7 Modular Curves as Shimura Variety.- 8 Non-vanishing Modulo p of Hecke L-values.- 9 p-Adic Hecke L-functions and their mi-invariants.- 10 Toric Subschemes in a Split Formal Torus.- 11 Hecke Stable Subvariety is a Shimura Subvariety .- References.- Symbol Index.- Statement Index.- Subject Index.

About the author

Haruzo Hida is currently a professor of mathematics at University of California, Los Angeles.

Summary

This book contains a detailed account of the result of the author's recent Annals paper and JAMS paper on arithmetic invariant, including μ-invariant, L-invariant, and similar topics.   This book can be regarded as an introductory text to the author's previous book p-Adic Automorphic Forms on Shimura Varieties.  Written as a down-to-earth introduction to Shimura varieties, this text includes many examples and applications of the theory that provide motivation for the reader.  Since it is limited to modular curves and the corresponding Shimura varieties, this book is not only a great resource for experts in the field, but it is also accessible to advanced graduate students studying number theory.  Key topics include non-triviality of arithmetic invariants and special values of L-functions; elliptic curves over complex and p-adic fields; Hecke algebras; scheme theory; elliptic and modular curves over rings; and Shimura curves.

Additional text

“The main aim of the book is to give an account of Hida’s results on arithmetic invariants in an accessible way. … The book is intended for mathematicians with some background on modular forms and is worthwhile for both graduate students and experts. … There are numerous examples, exercises, and remarks, all aimed at carefully helping the reader. In conclusion, this book is a very welcome addition to the mathematical literature.” (Florian Sprung, Mathematical Reviews, April, 2015)
“The author gives in this book a detailed account of results concerning arithmetic invariants, including µ-invariant and L-invariant. … it contains a detailed account of the author’s recent results concerning arithmetic invariants. The book, addressed to advanced graduate students and experts working in number theory and arithmetic geometry, is a welcome addition to this beautiful and difficult area of research.” (Andrzej Dąbrowski, zbMATH, Vol. 1284, 2014)

Report

"The main aim of the book is to give an account of Hida's results on arithmetic invariants in an accessible way. ... The book is intended for mathematicians with some background on modular forms and is worthwhile for both graduate students and experts. ... There are numerous examples, exercises, and remarks, all aimed at carefully helping the reader. In conclusion, this book is a very welcome addition to the mathematical literature." (Florian Sprung, Mathematical Reviews, April, 2015)
"The author gives in this book a detailed account of results concerning arithmetic invariants, including µ-invariant and L-invariant. ... it contains a detailed account of the author's recent results concerning arithmetic invariants. The book, addressed to advanced graduate students and experts working in number theory and arithmetic geometry, is a welcome addition to this beautiful and difficult area of research." (Andrzej Dabrowski, zbMATH, Vol. 1284, 2014)

Product details

Authors Haruzo Hida
Publisher Springer, Berlin
 
Languages English
Product format Hardback
Released 25.01.2013
 
EAN 9781461466567
ISBN 978-1-4614-6656-7
No. of pages 450
Dimensions 162 mm x 30 mm x 242 mm
Weight 807 g
Illustrations XVIII, 450 p.
Series Springer Monographs in Mathematics
Schriftenreihe Markt und Marketing
Springer Monographs in Mathematics
Schriftenreihe Markt und Marketing
Subjects Natural sciences, medicine, IT, technology > Mathematics > Probability theory, stochastic theory, mathematical statistics

B, Mathematics and Statistics, Algebraic Geometry, Number Theory

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.