Fr. 134.00

Unified Plasticity for Engineering Applications

English · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

Considerably simplified models of macroscopic material behavior, such as the idealization for metals of elastic-time independent plastic response with a yield (onset) criterion, have served the engineering profession well for many years. They are still basic to the design and analysis of most structural applications. In the need to use materials more effectively, there are circumstances where those traditional models are not adequate, and constitutive laws that are more physically realistic have to be employed. This is especially relevant to conditions where the inherent time dependence of inelastic deformations, referred to as "viscoplasticity", is pronounced such as at elevated temperatures and for high strain rates. Unified theories of elastic-viscoplastic material behavior, which are primarily applicable for metals and metallic alloys, combine all aspects of inelastic response into a set of time dependent equations with a single inelastic strain rate variable. For such theories, creep under constant stress, stress relaxation under constant strain, and stress-strain relations at constant rates are each special cases of a general formulation. Those equations mayor may not include a yield criterion, but models which do not separate a fully elastic region from the overall response could be considered "unified" in a more general sense. The theories have reached a level of development and maturity where they are being used in a number of sophisticated engineering applications. However, they have not yet become a standard method of material representation for general engineering practice.

List of contents

1. Formulation of a Unified Constitutive Theory of Elastic-Viscoplastic Behavior.- 1.1. Introduction.- 1.2. Concepts and Basic Equations.- 1.3. Extensions and General Applications of the Basic Equations.- 1.4. Integration of Constitutive Equations.- 2. Specific Applications.- 2.1. Material Constants and Applications.- 3. Commentaries.- 3.1. Status of the B-P Constitutive Theory.- 3.2. Further Developments.- Appendix - Computer Program.- References.

Summary

Considerably simplified models of macroscopic material behavior, such as the idealization for metals of elastic-time independent plastic response with a yield (onset) criterion, have served the engineering profession well for many years. They are still basic to the design and analysis of most structural applications. In the need to use materials more effectively, there are circumstances where those traditional models are not adequate, and constitutive laws that are more physically realistic have to be employed. This is especially relevant to conditions where the inherent time dependence of inelastic deformations, referred to as "viscoplasticity", is pronounced such as at elevated temperatures and for high strain rates. Unified theories of elastic-viscoplastic material behavior, which are primarily applicable for metals and metallic alloys, combine all aspects of inelastic response into a set of time dependent equations with a single inelastic strain rate variable. For such theories, creep under constant stress, stress relaxation under constant strain, and stress-strain relations at constant rates are each special cases of a general formulation. Those equations mayor may not include a yield criterion, but models which do not separate a fully elastic region from the overall response could be considered "unified" in a more general sense. The theories have reached a level of development and maturity where they are being used in a number of sophisticated engineering applications. However, they have not yet become a standard method of material representation for general engineering practice.

Product details

Authors Sol R Bodner, Sol R. Bodner, Sol R. Bodner
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 30.01.2013
 
EAN 9781461351283
ISBN 978-1-4613-5128-3
No. of pages 115
Weight 213 g
Illustrations XI, 115 p.
Series Mathematical Concepts and Methods in Science and Engineering
Mathematical Concepts and Methods in Science and Engineering
Mathematical Concepts in Science and Engineering
Subject Natural sciences, medicine, IT, technology > Physics, astronomy > Mechanics, acoustics

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.