Read more
Informationen zum Autor Edmund C. Lattime is Professor of Surgery at the Robert Wood Johnson Medical School and Deputy Director, The Cancer Institute of New Jersey. Dr. Lattime studies tumor immunology and immunotherapy focusing on the tumor-host interaction and the tumor microenvironment. While faculty at Sloan Kettering and then Thomas Jefferson University, his translational studies led to the development and Phase I testing of a novel Vaccinia-GMCSF construct designed to enhance the development of antitumor immunity via infection/transfection of the tumor microenvironment. Based on his mechanistic studies of immune escape mechanisms, his group recently developed and is testing a poxvirus-based immunization strategy, which uses antigen encoding poxvirus delivered to the tumor microenvironment, in patients with locally-advanced pancreatic cancer. Stanton L Gerson is Director of the Case Comprehensive Cancer Center & the National Center for Regenerative Medicine at Case Western Reserve University and Director of University Hospitals Seidman Cancer Center in Cleveland. Dr. Gerson studies DNA repair, stem cells and cancer therapy. He showed that over-expression of the MGMT DNA repair gene could prevent cancer and that a mutant form of MGMT protects hematopoietic stem cells from chemotherapy using lentiviral gene therapy. He has interrogated MGMT, MMR and BER DNA repair pathways as targets for cancer therapy, and proposed that methoxyamine would block base excision repair used in combination with chemotherapy. Dr. Gerson also directed the initial use of mesenchymal stem cells (MSCs) in bone marrow transplantation & in gene therapy. Klappentext Subtitled, "Translational Approaches From Preclinical Studies To Clinical Implementation". 3rd edition. Inhaltsverzeichnis Introduction; Overview of Viral and Non-Viral Vector Technologies; DNA Integration for Monitoring Outcome in Gene Therapy; Multiple Treatment Cycles and Gene Therapy; RNA interference-based therapy for cancer; Targeted systemic delivery of therapeutic siRNA; Lentiviral-vector Common Integration Sites; Selective Replicating Adenovirus and Tumor Necrosis; Cancer Suicide Gene Therapy; Adenovirus-retrovirus Hybrid Vectors ; Electroporation gene therapy; Biomaterials-based technologies for therapeutics and imaging; RNA Inhibition gene therapy; Monocytogenes-based DNA Delivery System; Toxin based Cancer Gene Therapy; Overview: Rationale use of oncolytic virus in clinical applications; Clinical development directions in oncolytic viral therapy; Selectively replicating herpes simplex viral vector; Oncolytic Vaccinia Virus for Cancer Therapy; Lister strain Vaccinia Virus; Modification of Mammalian Reoviruses; Systemic Delivery of Oncolytic adenoviruses ; HIF-activated Oncolytic Adenoviruses; Overview of Immune Targets and Pathways; Overview of Gene Therapy with Gene-modified T Cells; Genetically Engineered (TCR) T cells for adoptive therapy; Viral-based Strategies for Combined Vaccine/microenvironment Modulation; Dendritic Cell Vaccines; Recombinant Poxvirus Vaccines; Provenge® and Genetic Fusion Vaccines; Lentivector Vaccines; In vivo Immune Gene Therapy of Solid Tumours; Chemotherapy Delivered after Viral Immunogene Therapy; Overview: selecting effective targets for gene therapy of cancer; Targeting Telomerase-expressing Cancer Cells; Adenovirus-mediated shRNAs ; Adenovirus-mediated SOCS3 Gene Transfer ; p53-based Cancer Therapy; Strategies for tumor-directed delivery of siRNA; Overview of Drug Resistance and Manipulation; Clinical Trials using LV P140KMGMT for Gliomas; Delivery of Liposome-mediated MGMT-siRNA; Cytidine Deaminase Gene Therapy for Recurrent Cancer; Tissue Specific Gene Therapy; Radiation Therapy; Overview of angiogenesis and target identification; Combination of Notch and Ephrin- targeted Therapy; Effects of sustained VEGF blockade on the tumor microenvironment; Clinical studies of Aflibercept (VEGF Trap); Overview of M...