Fr. 179.00

Generalizations of Thomae's Formula for Zn Curves

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

Previous publications on the generalization of the Thomae formulae to Zn curves have emphasized the theory's implications in mathematical physics and depended heavily on applied mathematical techniques. This book redevelops these previous results demonstrating how they can be derived directly from the basic properties of theta functions as functions on compact Riemann surfaces.

"Generalizations of Thomae's Formula for Zn Curves" includes several refocused proofs developed in a generalized context that is more accessible to researchers in related mathematical fields such as algebraic geometry, complex analysis, and number theory.

This book is intended for mathematicians with an interest in complex analysis, algebraic geometry or number theory as well as physicists studying conformal field theory.

List of contents

- Introduction.- 1. Riemann Surfaces.- 2. Zn Curves.- 3. Examples of Thomae Formulae.- 4. Thomae Formulae for Nonsingular Zn Curves.- 5. Thomae Formulae for Singular Zn Curves.-6. Some More Singular Zn Curves.-Appendix A. Constructions and Generalizations for the Nonsingular and Singular Cases.-Appendix B. The Construction and Basepoint Change Formulae for the Symmetric Equation Case.-References.-List of Symbols.-Index.

Summary

Previous publications on the generalization of the Thomae formulae to Zn curves have emphasized the theory's implications in mathematical physics and depended heavily on applied mathematical techniques. This book redevelops these previous results demonstrating how they can be derived directly from the basic properties of theta functions as functions on compact Riemann surfaces.
 
"Generalizations of Thomae's Formula for Zn Curves" includes several refocused proofs developed in a generalized context that is more accessible to researchers in related mathematical fields such as algebraic geometry, complex analysis, and number theory.
 
This book is intended for mathematicians with an interest in complex analysis, algebraic geometry or number theory as well as physicists studying conformal field theory.

Additional text

From the reviews:
“This book provides a detailed exposition of Thomae’s formula for cyclic covers of CP1, in the non-singular case and in the singular case for Zn curves of a particular shape. … This book is written for graduate students as well as young researchers … . In any case, the reader should be acquainted with complex analysis (in several variables), Riemann surfaces, and some elementary algebraic geometry. It is a very readable book. The theory is always illustrated with examples in a very generous mathematical style.” (Juan M. Cerviño Mathematical Reviews, Issue 2012 f)
“In the book under review, the authors present the background necessary to understand and then prove Thomae’s formula for Zn curves. … The point of view of the book is to work out Thomae formulae for Zn curves from ‘first principles’, i.e. just using Riemann’s theory of theta functions. … the ‘elementary’ approach which is chosen in the book makes it a nice development of Riemann’s ideas and accessible to graduate students and young researchers.” (Christophe Ritzenthaler, Zentralblatt MATH, Vol. 1222, 2011)

Report

From the reviews:
"This book provides a detailed exposition of Thomae's formula for cyclic covers of CP1, in the non-singular case and in the singular case for Zn curves of a particular shape. ... This book is written for graduate students as well as young researchers ... . In any case, the reader should be acquainted with complex analysis (in several variables), Riemann surfaces, and some elementary algebraic geometry. It is a very readable book. The theory is always illustrated with examples in a very generous mathematical style." (Juan M. Cerviño Mathematical Reviews, Issue 2012 f)
"In the book under review, the authors present the background necessary to understand and then prove Thomae's formula for Zn curves. ... The point of view of the book is to work out Thomae formulae for Zn curves from 'first principles', i.e. just using Riemann's theory of theta functions. ... the 'elementary' approach which is chosen in the book makes it a nice development of Riemann's ideas and accessible to graduate students and young researchers." (Christophe Ritzenthaler, Zentralblatt MATH, Vol. 1222, 2011)

Product details

Authors Hershel Farkas, Hershel M Farkas, Hershel M. Farkas, Shaul Zemel
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 18.12.2012
 
EAN 9781461427582
ISBN 978-1-4614-2758-2
No. of pages 354
Dimensions 154 mm x 20 mm x 234 mm
Weight 569 g
Illustrations XVII, 354 p.
Series Developments in Mathematics
Developments in Mathematics
Subjects Natural sciences, medicine, IT, technology > Mathematics > Arithmetic, algebra

C, Mathematics and Statistics, Algebraic Geometry, Number Theory, Complex analysis, complex variables, Special Functions, Functional analysis & transforms, Functions of a Complex Variable, Functions of complex variables, Several Complex Variables and Analytic Spaces

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.