Fr. 189.00

Physics of Lakes. Vol.1 - Foundation of the Mathematical and Physical Background

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

This first volume in the treatise on the Physics of Lakes deals with the formulation of the mathematical and physical background. A large number of lakes on Earth are described, presenting their morphology as well as the causes of their response to the driving environment. Because the physics of lakes cannot be described without the language used in mathematics, these subjects are introduced first by using the simplest approach and with utmost care, assuming only a limited college knowledge of classical Newtonian physics, and continues with increasing complexity and elegance, starting with the fundamental equations of Lake Hydrodynamics in the form of 'primitive equations' and leading to a detailed treatment of angular momentum and vorticity. Following the presentation of these fundamentals turbulence modeling is introduced with Reynolds, Favre and other non-ergodic filters. The derivation of averaged field equations is presented with different closure schemes, including thek- model for a Boussinesq fluid and early anisotropic closure schemes. This is followed by expositions of surface gravity waves without rotation and an analysis of the role played by the distribution of mass within water bodies on the Earth, leading to a study of internal waves. The vertical structure of wind-induced currents in homogeneous and stratified waters and the Ekman theory and some of its extensions close this first volume of Physics of Lakes. The last chapter collects formulas for the phenomenological coefficients of water.

List of contents

Mathematical Prerequisites.- A Brief Review of the Basic Thermomechanical Laws of Classical Physics.- Fundamental Equations of Lake Hydrodynamics.- Conservation of Angular Momentum - Vorticity.- Turbulence Modelling.- Introduction to Linear Waves.- The Role of the Distribution of Mass within Water Bodies on Earth.- Vertical Structure of Wind-induced Currents in Homogenous and Stratified Waters.- Phenomenological Coefficients of Water.

Summary

This first volume in the treatise on the Physics of Lakes deals with the formulation of the mathematical and physical background. A large number of lakes on Earth are described, presenting their morphology as well as the causes of their response to the driving environment. Because the physics of lakes cannot be described without the language used in mathematics, these subjects are introduced first by using the simplest approach and with utmost care, assuming only a limited college knowledge of classical Newtonian physics, and continues with increasing complexity and elegance, starting with the fundamental equations of Lake Hydrodynamics in the form of ‘primitive equations’ and leading to a detailed treatment of angular momentum and vorticity. Following the presentation of these fundamentals turbulence modeling is introduced with Reynolds, Favre and other non-ergodic filters. The derivation of averaged field equations is presented with different closure schemes, including thek-ε model for a Boussinesq fluid and early anisotropic closure schemes. This is followed by expositions of surface gravity waves without rotation and an analysis of the role played by the distribution of mass within water bodies on the Earth, leading to a study of internal waves. The vertical structure of wind-induced currents in homogeneous and stratified waters and the Ekman theory and some of its extensions close this first volume of Physics of Lakes. The last chapter collects formulas for the phenomenological coefficients of water.

Additional text

From the reviews:
“The book offers a broad, self-contained introduction to the physics of lakes and will be an invaluable reference for all those with an active interest in geophysical mechanics research and teaching.” (Felix Kaplanski, Zentralblatt MATH, Vol. 1207, 2011)

Report

From the reviews:
"The book offers a broad, self-contained introduction to the physics of lakes and will be an invaluable reference for all those with an active interest in geophysical mechanics research and teaching." (Felix Kaplanski, Zentralblatt MATH, Vol. 1207, 2011)

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.