Fr. 134.00

A Dressing Method in Mathematical Physics

English · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

The monograph is devoted to the systematic presentation of the so called "dressing method" for solving differential equations (both linear and nonlinear) of mathematical physics. The essence of the dressing method consists in a generation of new non-trivial solutions of a given equation from (maybe trivial) solution of the same or related equation. The Moutard and Darboux transformations discovered in XIX century as applied to linear equations, the Bäcklund transformation in differential geometry of surfaces, the factorization method, the Riemann-Hilbert problem in the form proposed by Shabat and Zakharov for soliton equations and its extension in terms of the d-bar formalism comprise the main objects of the book. Throughout the text, a generally sufficient "linear experience" of readers is exploited, with a special attention to the algebraic aspects of the main mathematical constructions and to practical rules of obtaining new solutions. Various linear equations of classical and quantum mechanics are solved by the Darboux and factorization methods. An extension of the classical Darboux transformations to nonlinear equations in 1+1 and 2+1 dimensions, as well as its factorization are discussed in detail. The applicability of the local and non-local Riemann-Hilbert problem-based approach and its generalization in terms of the d-bar method are illustrated on various nonlinear equations.

List of contents

Mathematical preliminaries.- Factorization and classical Darboux transformations.- From elementary to twofold elementary Darboux transformation.- Dressing chain equations.- Dressing in 2+1 dimensions.- Applications of dressing to linear problems.- Important links.- Dressing via local Riemann-Hilbert problem.- Dressing via nonlocal Riemann-Hilbert problem.- Generating solutions via ? problem.

Summary

This monograph systematically develops and considers the so-called "dressing method" for solving differential equations (both linear and nonlinear), a means to generate new non-trivial solutions for a given equation from the (perhaps trivial) solution of the same or related equation. Throughout, the text exploits the "linear experience" of presentation, with special attention given to the algebraic aspects of the main mathematical constructions and to practical rules of obtaining new solutions.

Additional text

From the reviews:

"This book is a collection of the work of the two authors over many years. … The authors connect nicely the newest contributions and the 150 years of history of Darboux transformations and solvable potentials of the linear Schrödinger equation. … The book can be recommended to graduate students … ." (Dmitry E. Pelinovsky, Mathematical Reviews, Issue 2008 k)

"The term ‘dressing’ generally implies a construction that contains a transformation from a simpler state to a more advanced state of a system. … It provides new insight into this significant research area of great importance. … The book can be of very great use to graduate students and professional mathematicians and physicists. … It provides a good introduction to the dressing method, and it is definitely a good job." (Ma Wen-Xiu, Zentralblatt MATH, Vol. 1142, 2008)

Report

From the reviews:

"This book is a collection of the work of the two authors over many years. ... The authors connect nicely the newest contributions and the 150 years of history of Darboux transformations and solvable potentials of the linear Schrödinger equation. ... The book can be recommended to graduate students ... ." (Dmitry E. Pelinovsky, Mathematical Reviews, Issue 2008 k)
"The term 'dressing' generally implies a construction that contains a transformation from a simpler state to a more advanced state of a system. ... It provides new insight into this significant research area of great importance. ... The book can be of very great use to graduate students and professional mathematicians and physicists. ... It provides a good introduction to the dressing method, and it is definitely a good job." (Ma Wen-Xiu, Zentralblatt MATH, Vol. 1142, 2008)

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.