Fr. 135.00

High Frequency Acoustics in Colloid-Based Meso- and Nanostructures by Spontaneous Brillouin Light Scattering

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

The present thesis deals with the exploration of phononic properties ofmeso- and nanostructured colloid-based composite materials at hypersonic(GHz) frequencies. The emerging field of phononics, the mechanical analogue of photonics, treats the propagation and manipulation of acoustic waves in structured materials. Due to their widely tunable properties (size, density, etc.) and their ability to self-assembly, polymer colloids are ideal systems to realize hypersonic phononics, which are investigated by Brillouin light scattering herein. Therefore, both the mechanical and physical properties of the individual colloidal particles, which manifest in their resonance vibrations (eigenmodes), as well as the acoustic propagation in colloidal structures have been investigated.

List of contents

Basics and Brillouin Light Scattering.- Methods.- The Vibrations of Individual Colloids.- Phononic Behavior of Colloidal Systems.- Smaller than Colloids: Characterization of Stable Organic Glass.- Concluding Remarks.- Appendix: Scattering Geometry.

Summary

This book deals with the exploration of phononic properties of
meso- and nanostructured colloid-based composite materials at hypersonic (GHz) frequencies. It contains new research results in the emerging field of phononics.

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.