Fr. 189.00

Redox Systems Under Nano-Space Control

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

The generation of novel redox systems under nano-space control is one of the most exciting fields in present organic, inorganic, and supramolecular chemistry. The authors have drawn together the newest information on the construction of such novel redox systems using nano-space control of complexation or molecular chain-induced spaces and metal- or self-assembled spaces through combining techniques in coordination, supramolecular, and bio-inspired chemistry. Such design on the nano level produces hybrid conjugated systems composed of transition and synthetic metals, metallohosts, redox-active self-assembled monolayers of helical peptides, DNA-directed metal arrays, photoactive antibody systems, chiral rotaxanes, and redox-active imprinted polymers. In the future, these systems will be the basis for novel selective electron-transfer reactions as well as new functional materials and catalysts.

List of contents

Redox Systems via d,?-Conjugation.- Conjugated Complexes with Quinonediimine Derivatives.- Realizing the Ultimate Amplification in Conducting Polymer Sensors: Isolated Nanoscopic Pathways.- Metal-Containing ?-Conjugated Materials.- Redox Active Architectures and Carbon-Rich Ruthenium Complexes as Models for Molecular Wires.- Molecular Metal Wires Built from a Linear Metal Atom Chain Supported by Oligopyridylamido Ligands.- Multielectron Redox Catalysts in Metal-Assembled Macromolecular Systems.- Redox Systems via Coordination Control.- Triruthenium Cluster Oligomers that Show Multistep/Multielectron Redox Behavior.- Molecular Architecture of Redox-Active Multilayered Metal Complexes Based on Surface Coordination Chemistry.- Programmed Metal Arrays by Means of Designable Biological Macromolecules.- Metal-Incorporated Hosts for Cooperative and Responsive Recognition to External Stimulus.- Synthesis of Poly(binaphthol) via Controlled Oxidative Coupling.- Redox Systems via Molecular Chain Control.- Nano Meccano.- Through-Space Control of Redox Reactions Using Interlocked Structure of Rotaxanes.- Metal-Containing Star and Hyperbranched Polymers.- Electronic Properties of Helical Peptide Derivatives at a Single Molecular Level.- Construction of Redox-Induced Systems Using Antigen-Combining Sites of Antibodies and Functionalization of Antibody Supramolecules.

Summary

This is the first book to examine redox systems using the novel principle of nano-space control, one of the most exciting fields in contemporary inorganic and supramolecular chemistry. The authors review the newest research on novel redox systems, showing how they can produce hybrid conjugated systems composed of transition and synthetic metals, metallohosts, redox-active self-assembled monolayers of helical peptides, metal-assisted DNA based pairs, photoactive antibody systems, chiral rotaxanes, and redox-active imprinted polymers. In the future, these systems will be the basis for novel selective electron-transfer reactions as well as new functional materials and catalysts.

Product details

Assisted by Toshikaz Hirao (Editor), Toshikazu Hirao (Editor)
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 11.10.2010
 
EAN 9783642067365
ISBN 978-3-642-06736-5
No. of pages 292
Dimensions 156 mm x 17 mm x 234 mm
Weight 480 g
Illustrations XVIII, 292 p. 233 illus.
Subjects Natural sciences, medicine, IT, technology > Technology > Mechanical engineering, production engineering

Anorganische Chemie, Organische Chemie, B, ORGANOMETALLIC CHEMISTRY, ORGANIC CHEMISTRY, Technische Anwendung von Polymeren und Verbundwerkstoffen, Katalyse, Metallorganische Chemie, Catalysis, Chemistry and Materials Science, polymers, Polymer Sciences, Nanotechnology, Polymer chemistry, Inorganic Chemistry

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.