Fr. 158.00

Standard Monomial Theory - Invariant Theoretic Approach

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

Schubert varieties lie at the cross roads of algebraic geometry, combinatorics, commutative algebra, and representation theory. They are an important class of subvarieties of flag varieties, interesting in their own right, and providing an inductive tool for studying flag varieties. The literature on them is vast, for they are ubiquitous - they have been intensively studied over the last fifty years, from many different points of view.
This book is mainly a detailed account of a particularly interesting instance of their occurrence: namely, in relation to classical invariant theory. More precisely, it is about the connection between the first and second fundamental theorems of classical invariant theory and standard monomial theory for Schubert varieties in certain special flag varieties. Historically, this connection was the prime motivation for the development of standard monomial theory. Determinantal varieties and basic concepts of geometric invariant theory arise naturally in establishing the connection.

List of contents

Generalities on algebraic varieties.- Generalities on algebraic groups.- Grassmannian.- Determinantal varieties.- Symplectic Grassmannian.- Orthogonal Grassmannian.- The standard monomial theoretic basis.- Review of GIT.- Invariant theory.- SLn(K)-action.- SOn(K)-action.- Applications of standard monomial theory.

Summary

Schubert varieties lie at the cross roads of algebraic geometry, combinatorics, commutative algebra, and representation theory. They are an important class of subvarieties of flag varieties, interesting in their own right, and providing an inductive tool for studying flag varieties. The literature on them is vast, for they are ubiquitous - they have been intensively studied over the last fifty years, from many different points of view.
This book is mainly a detailed account of a particularly interesting instance of their occurrence: namely, in relation to classical invariant theory. More precisely, it is about the connection between the first and second fundamental theorems of classical invariant theory and standard monomial theory for Schubert varieties in certain special flag varieties. Historically, this connection was the prime motivation for the development of standard monomial theory. Determinantal varieties and basic concepts of geometric invariant theory arise naturally in establishing the connection.

Additional text

From the reviews:

"The goal of the book is to present the results of Classical Invariant Theory (CIT) and Standard Monomial Theory (SMT) and the connection between the two theories. … The book is written for a broad audience including prospective graduate students and young researchers. The exposition is self-contained. It may be used for a year long course on Invariant Theory and Schubert varieties." (Dmitrii A. Timashëv, Mathematical Reviews, Issue 2008 m)
"The book aims to describe the beautiful connection between Schubert varieties and their Standard Monomial Theory (SMT) on the one hand and Classical Invariant Theory (CIT) on the other. … make the presentation self-contained keeping in mind the needs of prospective graduate students and young researchers. … The book may be recommended as a nice introduction to SMT and related active research areas. It may be used for a year long course on Invariant Theory and Schubert varieties." (Ivan V. Arzhantsev, Zentralblatt MATH, Vol. 1137 (15), 2008)

Report

From the reviews:

"The goal of the book is to present the results of Classical Invariant Theory (CIT) and Standard Monomial Theory (SMT) and the connection between the two theories. ... The book is written for a broad audience including prospective graduate students and young researchers. The exposition is self-contained. It may be used for a year long course on Invariant Theory and Schubert varieties." (Dmitrii A. Timashëv, Mathematical Reviews, Issue 2008 m)
"The book aims to describe the beautiful connection between Schubert varieties and their Standard Monomial Theory (SMT) on the one hand and Classical Invariant Theory (CIT) on the other. ... make the presentation self-contained keeping in mind the needs of prospective graduate students and young researchers. ... The book may be recommended as a nice introduction to SMT and related active research areas. It may be used for a year long course on Invariant Theory and Schubert varieties." (Ivan V. Arzhantsev, Zentralblatt MATH, Vol. 1137 (15), 2008)

Product details

Authors Lakshmibai, V Lakshmibai, V. Lakshmibai, Venkatramani Lakshmibai, Venkratamani Lakshmibai, K N Raghavan, K. N. Raghavan, Komaranapuram N. Raghavan
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 12.10.2010
 
EAN 9783642095436
ISBN 978-3-642-09543-6
No. of pages 266
Dimensions 155 mm x 15 mm x 235 mm
Weight 429 g
Illustrations XIV, 266 p.
Series Encyclopaedia of Mathematical Sciences
Encyclopaedia of Mathematical Sciences
Subjects Natural sciences, medicine, IT, technology > Mathematics > Arithmetic, algebra

Algebra, B, Mathematics and Statistics, Algebraic Geometry, standard monomial theory, algebraic varieties, representation theory, Schubert varieties

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.