Sold out

Principles of Heat Transfer, SI Edition

English · Paperback / Softback

Description

Read more

PRINCIPLES OF HEAT TRANSFER was first published in 1959, and since then it has grown to be considered a classic within the field, setting the standards for coverage and organization within all other Heat Transfer texts. The book is designed for a one-semester course in heat transfer at the junior or senior level, however, flexibility in pedagogy has been provided. Following several recommendations of the ASME Committee on Heat Transfer Education, Kreith, Manglik, and Bohn present relevant and stimulating content in this fresh and comprehensive approach to heat transfer, acknowledging that in today's world classical mathematical solutions to heat transfer problems are often less influential than computational analysis. This acknowledgement is met with the emphasize that students must still learn to appreciate both the physics and the elegance of simple mathematics in addressing complex phenomena, aiming at presenting the principles of heat transfer both within the framework of classical mathematics and empirical correlations.

List of contents

1. BASIC MODES OF HEAT TRANSFER.The Relation of Heat Transfer to Thermodynamics. Dimensions and Units. Heat Conduction. Convection. Radiation. Combined Heat Transfer Systems. Thermal Insulation. Heat Transfer and the Law of Energy Conservation. References. Problems. Design Problems.2. HEAT CONDUCTION.Introduction. The Conduction Equation. Steady Heat Conduction in Simple Geometries. Extended Surfaces. Multidimensional Steady Conduction. Transient Heat Conduction. Charts for Transient Heat Conduction. Closing Remarks. References. Problems. Design Problems.3. NUMERICAL ANALYSIS OF HEAT CONDUCTION.Introduction. One-Dimensional Steady Conduction. One-Dimensional Unsteady Conduction. Two-Dimensional Unsteady and Steady Conduction. Cylindrical Coordinates. Irregular Boundaries. Closing Remarks. References. Problems. Design Problems.4. ANALYSIS OF CONVECTION HEAT TRANSFER.Introduction. Convection Heat Transfer. Boundary Layer Fundamentals. Conservation Equations of Mass, Momentum, and Energy for Laminar Flow over a Flat Plate. Dimensionless Boundary Layer Equations and Similarity Parameters. Evaluation of Convection Heat Transfer Coefficients. Dimensional Analysis. Analytic Solution for Laminar Boundary Layer Flow Over a Flat Plate. Approximate Integral Boundary Layer Analysis. Analogy Between Momentum and Heat Transfer in Turbulent Flow over a Flat Surface. Reynolds Analogy for Turbulent Flow over Plane Surfaces. Mixed Boundary Layer. Special Boundary Conditions and High-Speed Flow. Closing Remarks. References. Problems. Design Problems.5. NATURAL CONVECTIONIntroduction. Similarity Parameters for Natural Convection. Empirical Correlation for Various Shapes. Rotating Cylinders, Disks, and Spheres. Combined Forced and Natural Convection. Finned Surfaces. Closing Remarks. References. Problems. Design Problems.6. FORCED CONVECTION INSIDE TUBES AND DUCTS.Introduction. Analysis of Laminar Forced Convection In a Long Tube. Correlations for Laminar Forced Convection. Analogy Between Heat and Momentum Transfer in Turbulent Flow. Empirical Correlations for Turbulent Forced Convection. Heat Transfer Enhancement and Electronic-Device Cooling. Closing Remarks. References. Problems. Design Problems.7. FORCED CONVECTION OVER EXTERIOR SURFACES.Flow over Bluff Bodies. Cylinders, Spheres, and Other Bluff Shapes. Packed Beds. Tube Bundles in Cross-Flow. Finned Tube Bundles in Cross-Flow. Free Jets. Closing Remarks. References. Problems. Design Problems.8. HEAT EXCHANGERS.Introduction. Basic Types of Heat Exchangers. Overall Heat Transfer Coefficient. Log Mean Temperature Difference. Heat Exchanger Effectiveness. Heat Transfer Enhancement. Microscale Heat Exchangers. Closing Remarks. References. Problems. Design Problems. 9. HEAT TRANSFER BY RADIATION.Thermal Radiation. Blackbody Radiation. Radiation Properties. The Radiation Shape Factor. Enclosures with Black Surfaces. Enclosures with Gray Surfaces. Matrix Inversion. Radiation Properties of Gases and Vapors. Radiation Combined with Convection and Conduction. Closing Remarks. References. Problems. Design Problems.10. HEAT TRANSFER WITH PHASE CHANGEIntroduction to Boiling. Pool Boiling. Boiling in Forced Convection. Condensation. Condenser Design. Heat Pipes. Freezing and Melting. References. Problems. Design Problems.APPENDIX 1: THE INTERNATIONAL SYSTEM OF UNITS.APPENDIX 2: TABLES.Properties of Solids. Thermodynamic Properties of Liquids. Heat Transfer Fluids. Liquid Metals. Thermodynamic Properties of Gases. Miscellaneous Properties, Computer Codes, and Error Function. Correlation Equations for Physical Properties.APPEDNIX 3: TRIDIAGONAL MATIRX COMPUTER PROGRAM .APPENDIX 4: COMPUTER CODES FOR HEAT TRANSFER.APPENDIX 5: THE HEAT TRANSFER LITERATURE.

About the author

Dr. Mark S. Bohn is the former vice president of engineering, president of Rentech Services Corporation, and co-founder of Rentech, Inc.Dr. Raj. M. Manglik is a Professor of Mechanical Engineering in the College of Engineering and Applied Science at the University of Cincinnati in Ohio. He received his Ph.D. in Mechanical Engineering from Rensselaer Polytechnic Institute. He is a Fellow of the American Society of Mechanical Engineers (ASME) and a senior member of both the American Institute of Chemical Engineers (AIChE) and the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE). He has received many honors and recognitions for seminal research, teaching and educational enterprise, and professional engineering service. His areas of interest are enhancement of heat transfer, interfacial and transport phenomena, and thermal science and energy engineering. He is the Editor-in-Chief of the Journal of Enhanced Heat Transfer.Dr. Frank Kreith was Professor Emeritus in the Mechanical Engineering Department at the University of Colorado in Boulder. He received his Ph.D. in Applied Science from the University of Paris in 1965. He was a member of the National Academy of Engineering (NAE), a Fellow and Honorary Member of the American Society of Mechanical Engineers (ASME), and recipient of the ASME Medal. His areas of interest included heat transfer, thermal engineering, and solar engineering. He was a consultant in the field of heat transfer engineering in many parts of the world. The ASME International established “The Frank Kreith Energy Award” in 2005 in recognition of his contributions to the field of renewable energy and heat transfer.

Summary

PRINCIPLES OF HEAT TRANSFER was first published in 1959, and since then it has grown to be considered a classic within the field, setting the standards for coverage and organization within all other Heat Transfer texts. The book is designed for a one-semester course in heat transfer at the junior or senior level, however, flexibility in pedagogy has been provided. Following several recommendations of the ASME Committee on Heat Transfer Education, Kreith, Manglik, and Bohn present relevant and stimulating content in this fresh and comprehensive approach to heat transfer, acknowledging that in today's world classical mathematical solutions to heat transfer problems are often less influential than computational analysis. This acknowledgement is met with the emphasize that students must still learn to appreciate both the physics and the elegance of simple mathematics in addressing complex phenomena, aiming at presenting the principles of heat transfer both within the framework of classical mathematics and empirical correlations.

Product details

Authors Mark Bohn, Mark S. Bohn, Frank Kreith, Raj Manglik, Raj M. Manglik
Publisher Cengage Learning EMEA
 
Languages English
Product format Paperback / Softback
Released 04.04.2011
 
EAN 9781439061862
ISBN 978-1-4390-6186-2
No. of pages 696
Weight 1219 g
Subject Natural sciences, medicine, IT, technology > Technology > General, dictionaries

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.