Fr. 77.00

Monotone Potentialoperatoren in Theorie und Anwendung

German · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

In der angewandten Funktionalanalysis sind in den letzten Jahrzehnten verschie dene relativ abgeschlossene Theorien zur Losung nichtlinearer Probleme entstanden, unter denen die Methode der monotonen Operatoren und die Variationsmethoden mit Potentialoperatoren einen hervorragenden Platz einnehmen. Die "Monotonietheorie" entstand vornehmlich im Rahmen der funktionalanaly tischen Behandlungsweise von Randwertproblemen fur elliptische Differentialglei chungen. In engem Zusammenhang mit diesen Randwertproblemen entwickelte sich auch die Theorie der Potentialoperatoren. Potentialoperatoren sind Gradienten differenzierbarer Funktionale; sie treten daher zwangslaufig bei der Anwendung von Variationsmethoden auf. Mit Hille monotoner Potentialoperatoren kann man elliptische Differentialgleichun gen modellieren und lOsen, die aus einem Variationsprinzip hergeleitet werden konnen. Ein ausgereiftes Konzept dieser Methode und seine Realisierung, die von der Model lierung bis zur konstruktiven Losung reichte, fand sich bereits in dem 1950 erschienenen Buch von S. G. MICHLIN [65], dem weitere Bucher dieses Autors folgten [68], [69]. 1m Jahre 1956 erschienen zwei Bucher uber nichtlineare Operatoren in der Funktio nalanalysis von M. A. KRASNOSEL'SKIJ [38] und M. M. V AJNBERG [87] mit Anwen dungen in der Theorie der Integralgleichungen. In dem Buch von M. M. V AJNBERG wurden gelegentlich monotone Potentialoperatoren benutzt. Der Monotoniebegriff selbst wurde jedoch spater gepragt, siehe R. I. KAcuROVSKIJ [31], G. J. MINTY [70].

List of contents

I. Gleichungen in abstrakten Räumen.-
1. Einführung.-
2. Lineare Funktionale und reflexive Bäume.-
3. Minimum-Probleme und Gleichungen mit Potentialoperatoren.-
4. Minimum-Probleme für konvexe Funktionale.-
5. Gleichungen mit kontraktiven Operatoren.-
6. Kommentare.- II. Einige Gleichungen aus der mathematischen Theorie der deformierbaren Festkörper.-
1. Die Grundgleichungen.-
2. Das elastische Gleichgewicht dünner Platten.-
3. Ebene Probleme der elastisch-plastischen Deformationstheorie.-
4. Probleme der elastisch-plastischen Fließtheorie.-
5. Elastisch-idealplastische Körper.-
6. Kommentare.- III. Konkretisierung und Lösung von Operatorgleichungen und Minimum-Problemen.-
1. Gleichungen in Funktionenräumen.-
2. Gleichungen mit Lipschitz-stetigen stark monotonen Operatoren im Hilbertraum.-
3. Gleichungen in Funktionenräumen über unbeschränkten Gebieten.-
4. Minimum-Probleme für stark wachsende Funktionale und Operatorgleichungen in Sobolev-Orlicz-Räumen.-
5. Kommentare.- IV. Parameterabhängige Gleichungen.-
1. Implizite Operatorfunktionen.-
2. Gleichungen mit vollstetigen Potentialoperatoren.-
3. Trajektorien einer parameterabhängigen Operatorgleichung.-
4. Isoperimetrische Extremalaufgaben.-
5. Operator-Differentialgleichungen.-
6. Kommentare.- V. Approximation durch Folgen monotoner Operatoren und konvexer Funktionale.-
1. Iterations- und Projektionsverfahren.-
2. Die Konstruktion von Minimalfolgen.-
3. Modelle mit Nebenbedingungen.-
4. Kommentare.- Literatur.- Namen- und Sachverzeichnis.

Product details

Authors A Langenbach, A. Langenbach
Publisher Springer, Berlin
 
Languages German
Product format Paperback / Softback
Released 04.12.2012
 
EAN 9783540080718
ISBN 978-3-540-08071-8
No. of pages 358
Weight 600 g
Illustrations 358 S.
Series Hochschultext
Hochschultext
Hochschultexte / Universitexts
Subject Natural sciences, medicine, IT, technology > Mathematics > Analysis

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.