Fr. 134.00

Symmetries and Singularity Structures - Integrability and Chaos in Nonlinear Dynamical Systems

English · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

Symmetries and singularity structures play important roles in the study of nonlinear dynamical systems. It was Sophus Lie who originally stressed the importance of symmetries and invariance in the study of nonlinear differential equations. How ever, the full potentialities of symmetries had been realized only after the advent of solitons in 1965. It is now a well-accepted fact that associated with the infinite number of integrals of motion of a given soliton system, an infinite number of gep. eralized Lie BAcklund symmetries exist. The associated bi-Hamiltonian struc ture, Kac-Moody, Vrrasoro algebras, and so on, have been increasingly attracting the attention of scientists working in this area. Similarly, in recent times the role of symmetries in analyzing both the classical and quantum integrable and nonintegrable finite dimensional systems has been remarkable. On the other hand, the works of Fuchs, Kovalevskaya, Painleve and coworkers on the singularity structures associated with the solutions of nonlinear differen tial equations have helped to classify first and second order nonlinear ordinary differential equations. The recent work of Ablowitz, Ramani and Segur, con jecturing a connection between soliton systems and Painleve equations that are free from movable critical points, has motivated considerably the search for the connection between integrable dynamical systems with finite degrees of freedom and the Painleve property. Weiss, Tabor and Carnevale have extended these ideas to partial differential equations.

List of contents

I Symmetry Aspects.- Symmetries, Singularities and Exact Solutions for Nonlinear Systems.- Application of Isovector Approach for the Solutions of Differential Equations of Physical Systems.- Master Symmetries of Certain Nonlinear Partial Differential Equations.- Symmetries and Constants of Motion of Integrable Systems.- Lie Algebra, Bi-Hamiltonian Structure and Reduction Problem for Integrable Nonlinear Systems.- On the Role of Virasoro, Kac-Moody Algebra and Conformal Invariance in Soliton Hierarchies.- Generalised Lie Symmetries and Integrability of Coupled Nonlinear Oscillators with Two Degrees of Freedom.- Aspects of Symmetries of Dissipative Systems.- II Singularity Structure Aspects.- Painlevé Property in Hamiltonian and Non-Hamiltonian Systems.- Singularity Structure and Chaotic Dynamics of the Parametrically Driven Duffing Oscillator.- A Singularity Analysis Approach to the Solutions of Duffing's Equation.- III Integrability and Chaos: Quantum and Classical.- Avoided Level Crossing, Solitons and Random Matrix Theory.- Random Matrices and Quantum Chaos: Effects of Symmetry-Breaking on Spectral Correlations.- Quantum Groups.- Integrable Quantum Spin Chains and Some Problems Related to Integrable Systems.- On the Quantum Inverse Problem for a New Type of Nonlinear Schrödinger Equation for Alfven Waves in Plasma.- Nonlinear Chemical Dynamics.- Dynamics of Solitons on 4He Films.- Studies on a Josephson Junction with Nonlinear Resistance.- Index of Contributors.

Product details

Assisted by Daniel (Editor), Daniel (Editor), Muthiah Daniel (Editor), Muthuswam Lakshmanan (Editor), Muthuswamy Lakshmanan (Editor)
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 16.11.2012
 
EAN 9783540530923
ISBN 978-3-540-53092-3
No. of pages 208
Weight 395 g
Illustrations VIII, 208 p. 4 illus.
Series Research Reports in Physics
Research Reports in Physics
Subject Natural sciences, medicine, IT, technology > Mathematics > Miscellaneous

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.